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OUTLINE

Lecture 1: Context and HE gamma rays

» Gamma Rays

» Context: gamma ray astrophysics

» MeV gamma ray detection

» GeV gamma ray detection

» Gamma-ray interactions in the atmosphere

Lecture 2: VHE gamma rays

» The atmospheric Cherenkov technique (history and method)
» Other detection methods

» Current and future instruments

» Signal extraction and background modelling
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Gamma Rays

Characteristics of high-energy radiation
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Gamma Rays

» Medium-Energy Gamma Rays (MeV)
» High-Energy (HE) Gamma Rays (100 MeV-50 GeV)
» Very-high-energy Gamma-Rays (50 GeV - 100 TeV)
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Gamma Rays

» Medium-Energy Gamma Rays (MeV)
» High-Energy (HE) Gamma Rays (100 MeV-50 GeV)
» Very-high-energy Gamma-Rays (50 GeV - 100 TeV)

Astrophysical gamma rays:

» indicate the presence of a parent population of high-
energy massive particles

» little effect from absorption in the galaxy

» carry information directly from the sites of
acceleration
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Gamma Ray Astrophysics

Allows the study of:

» Non-thermal processes
» the highest energy window in the EM spectrum
» the “most violent places in the universe”

- extreme densities, masses

- intense radiation fields

- ultra-relativistic outflows/jets

- energetic shock waves and turbulence

Tuesday, July 3, 2012



Gamma Ray Astrophysic

a multi-disciplinary field!
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Gamma Ray Astrophysics

a multi-disciplinary field!

Particle Physics

Nuclear Physics

Astronomy

Quantum Physics

Cosmology
Plasma Physics
and hydrodymanics
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Gamma Ray Astrophysics

a multi-disciplinary field!

Particle Physics

uclear Physics

Astronom Gamma Ray
Astrophysics fry s

Cosmology

Plasma Physics
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~ Gamma Ray Astrophysics

a multi-disciplinary field!

Computer
science
(machine learning,
image recoghnition, big
data processing)

Particle Physics

uclear Physics

Astronom Gamma Ray
Astrophysics fry s

Cosmology

Plasma Physics
and hydrodymanics

Solid State
Physics
(detectors)
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First, a quick reminder of the last lecture...

particle interactions
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Tho
Scatt

» F = ma = gE sin(wot)

» hv << mc?

» Completely elastic

- no change in energy
(frequency) of scattered photon

8
O-t — _7TT6

3

62

e = (CGS units)

M C2
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Incduding relativity, we get
Compton scattering:

PL="t(La) L e Co
. Ef O
P/ =—°_ 17 2 , Targe e
T ) e Scat
e
Pé_ :(mec7 O) A’l \ Scattered
Ef ‘ photon
ol (%) ,
Af
P! +P._ =P/ + P/ ,

» Initial and final energy of the k.
electron is not the same (electron b\ B
gains energy in recoil)

A — A = —— (1 — cosb) i
mec

» Cross-section is energy- A\
dependent (Klein Nishina) N
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Klein-Nishina Cross Section
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Incduding relativity, we get
Compton scattering:
E
La) . T Co
E O
— (1.7 , arge e
o D) §¢ Scat
S
\ Scattered

¢ f photon
i Ee 5 /
Pe_ — c » D .

Af

i i _Df J
P’y_|_Pe_ —P7+Pe_

» Initial and final energy of the

electron is not the same (electron B\ 1 B

gains energy in recoil)

A — A = —— (1 —cos¥) &

M C
» Cross-section is energy- A\
dependent (Klein Nishina) N
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Case where scattering particle is not at
rest

» Electron starts out with large amount of
energy (ultra-relativistic)

» the photon may now gain energy from
the electron (upscattering)

Important in high-energy astrophysics:

» populations of high-energy particles can
upscatter radio, CMBR, optical, etc
photons to GeV - TeV energies!

» therefore when you have high-energy
electrons, you can see them with gamma-
ray telescopes!
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Creation of a particle-antiparticle pair when
a gamma-ray interacts with another
particle

» typically a nucleus in the detector medium
or in Earth’s atmosphere

Pro
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Can you have pair production in free
space?

Pro
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Creation of a particle-antiparticle pair when
a gamma-ray interacts with another
particle

» typically a nucleus in the detector medium
or in Earth’s atmosphere

Can you have pair production in free
space?

» good! gamma rays travel relatively
unimpeded from source to a detector.

Pro

Tuesday, July 3, 2012



Creation of a partice-antiparticde pair when
a gamma-ray interacts with another
particle

» typically a nucleus in the detector medium
or in Earth’s atmosphere

Can you have pair production in free
space?

» good! gamma rays travel relatively
unimpeded from source to a detector.

Pro

» extra-galactic background light! (more on fy
this later...)

But... We never really have free space

» light-by-light scattering has a very small
cross section, but it is non-zero and
distances in space are large!

» implies an energy-dependent distance limit
to how far gamma-rays can travel
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Cosmic Rays

A large level of ionizing radiation
can be detected on Earth

Originally assumed to be from
underground radiation sources.

Victor Hess in 1912:

» Balloon flight with an electroscope
for measuring radiation level

» Expected radiation to decrease as
one moves further from the
ground

» The opposite is true:

- implies cosmic origin of these
particles
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Particle Accelerators

Man-made accelerators

‘\
\ R
-

» logE

Particles are accelerated in radio-
frequency cavities

Mono-energetic “beam” of particles
E=10TeV
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Particle Accelerators

Man-made accelerators Cosmic Accelerators

downstream

upstream

» logE

Particles are accelerated in radio- Particles are accelerated in shocks
frequency cavities

logE

power-law distribution of particle

Mono-energetic “beam” of particles energies
E=10TeV E as high as PeV!
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Cosmic Ray Origin

The cosmic¢ rays we detect at earth (except the very highest-
energies) do not point back to their source

e

Gamma rays allow us to “see” the sites of ucceleration of
cosmic rays!
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Gamma Ray Production

Leptonic gamma-ray production:

» Start with a population of energetic electrons/positrons

» gamma rays produced via Inverse-Compton upscattering of
surrounding photon fields

- the CMBR is a nice target! (and it's always there)

- could also be synchrotron photons produced by the electron population
itself

Hadronic gamma-ray production:
» Start with a population of energetic protons (CRs)
» p+nucleus=m+X, p+nucleus=m* +X

» gamma rays are produced when 1% decay (11° -» y+y)
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Multi-wavelength view




Multi-wavelength view

It’s
a Snake!

Tuesday, July 3, 2012



"~ Multi-wavelength view
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population

Energy Flux
E2 dN/dE
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population
+ B field

Energy Flux
E2 dN/dE
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population
+ B field

+ photon field

E2 dN/dE

Inverse-
Compton

Energy Flux

Radio X-rays Yy-rays

IR
Energy
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population

+ B field + target material
+ photon field

E2 dN/dE

Inverse-
Compton

Energy Flux

Radio X-rays Yy-rays

IR
Energy
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population

+ B field + target material
+ photon field

Energy Flux
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population
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Non-thermal Spectral Energy Distribution

Electron Population Proton Population

+ B field + target material
+ photon field

Satellites

Energy Flux
E2 dN/dE

Inverse-
Compton

Radio X-rays Yy-rays

IR
Energy
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- OSIMIC RayS

Cosmic Ray Spectra of Various Experiments
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» E<knee: probably galactic,
maybe SNRs. What can
accelerate particles up to PeV
energies?

» Higher energies: unknown:
combination of Galactic +
Extragalactic sources probably

» at energies of 1PeV, gamma-rays
should be produced up to =100
TeV! Should be able to see the
sources as hard-spectrum gamma
emitters!
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Cosmic Ray Spectra of Various Experiments
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Energy (eV)

» E<knee: probably galactic,
maybe SNRs. What can
accelerate particles up to PeV
energies?

» Higher energies: unknown:
combination of Galactic +
Extragalactic sources probably

» at energies of 1PeV, gamma-rays
should be produced up to =100
TeV! Should be able to.see,th~=
sources as hard-s crure ‘0\\1\

C

emitters! \\See \e¢ Ga\)\




Some High Energy Instruments

Energy
HE y-ray
KeV MeV GeV TeV PeV
I NTEG RAL Water Cherenkov 1 0-11
>, EGRET Milagro
.E COMP
5 50 AGILE
.‘7, Air Cherenkov WEI‘_tleA;:}eCrenkov
o Fermi GST  macic futare) 10
w VERITAS
HESS

Air Cherenkov

CTA (future)

10-15

XMM
HST

vFv erg/cm?/s
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OUTLINE

Gamma Rays

Context: gamma ray astrophysics
MeV gamma ray detection

GeV gumma ray detection

Gamma-ray interactions in the atmosphere




Context

What can we learn from gamma-ray
observations?

Tuesday, July 3, 2012



Tuesday, July 3, 2012



Tuesday, July 3, 2012



Tuesday, July 3, 2012



@ Can we understand the physics .
behind the most violent -
environments in the universe? T4

p Where are particles accelerated in space? Wha‘tIQ the

Poin!

p What is the origin of the high-energy cosmic
rays?

p How do astrophysical shocks work?

b How does accretion around a black hole produce
jets and outflows?
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@ Can we understand the physics |
hehind the most violent %
environments in the universe?

j i T
p Where are particles accelerated in space? w h at,s‘“ t h e

p What is the origin of the high-energy cosmic
rays’?

L N
I t
Point?
3 f AN Cans ' s o 3

s

p How do astrophysical shocks work?

b How does accretion around a black hole produce
jets and outflows?

@ Do hadronic or leptronic processes
dominate in non-thermal objects?

© What is the nature of Dark
Matter?

@ What is the distribution of
background light in the universe?
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VTﬁe Crab Nebula (M1)
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The Crab Nebula (M1)
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- The Crab Nebula (M1)

@ supernova remnant + pulsar wind nebula +
associated pulsar

» remnant of core-collapse supernova, D=2 kpc

'» =30 ms for pulsar

» young, only 958 years old!

-
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- The Crab Nebula (M1)

@ supernova remnant + pulsar wind nebula +
associated pulsar

_» remnant of core-collapse supernova, D=2 kpc
'» =30 ms for pulsar
» young, only 958 years old!
‘® A luboratory for high energy processes!
» relativistic outflow

.» synchrotron nebula

» expanding shock wave

-
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The Crab Nebula (M1)

@ supernova remnant + pulsar wind nebula +
associated pulsar

R » remnant of core-collapse supernova, D=2 kpc

'» =30 ms for pulsar

» young, only 958 years old!

}© A laboratory for high energy processes!
-'; - » relativistic outflow

= | x .» synchrotron nebula

» expanding shock wave

® Brightest steady” source of gamma-rays in
the sky, L =10% erg/s,

4} much in X-ray and gamma-ray wavebands

» Excellent source for high-energy detectors, well
studied

» used as a “standard candle”
- often see results in “Crab units”

T i - not always easy to compare, since the spectrum
is different in different wavebands 31
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Spectral Energy Distribution of the Crab Nebula
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Spectral Energy Distribution of the Crab Nebula
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The Crab Nebula

@ Continuous injection

» central nebula bright above 10
keV, implies electrons > 10 eV

» lifetime < 1 year, so requires
injection: continuous
acceleration, not from the
supernova, but the wind nebulal

@ not a very efficient gamma-ray
emitter (IC bump quite low)

» due to high B-field, short electron
cooling time

» Still very bright only because of
it's extreme spindown luminosity.

» Other, older PWNe, should have
lower B-fields and be more
efficdient gamma-ray emitters

35
A
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Gamma-ray Horizon

. »
J -
; b TR Observed spectrun
c. ' s ' a- ; ' - ‘ :
o ' ik ?
: .. ! " ' | | g1 -
+ t 1§ e /
\ Y "' ; ' | -'n
. Gamma-rays s .o e e i DL, T - . al Sl
. o "- { : \ \ ' 5 ..‘ / ’ . .
from jet of Quasar - AR < ShER, K \ SRR
- h . .- y g ht ] A | 44 ;
y b e W
iy J
. .. |
-4 : i
‘ .‘II ) “ St

El.llltteds.l)ectrflﬂl: IR AR 0 T R TR i .

: . A . " . ' . .
N ’ N ' ' ' v " ' ' ! \ »

» . ’ ’ : N T ' ' ' .'.
Eﬁ ‘ . 5y . ' "\ ) : . b .‘ }, { 5 : .‘ .l.‘ A

= . i - _ . ' .‘ ' .h y .‘,l‘ "‘. f R N .

Eﬁ ) ) . - | ' I Y| : ‘ . | | :
:s _ . ‘ S e : e ' . "' 'l ' .

' " low'absorption -

, ‘ | '+ .Background light
 Energy : . : e L . | .
: | ‘ . o . | - 4
Tuesday, July 3, 2012




Background light
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Scattering target for the highest-energy gamma rays

» limits detection at >TeV energies to about Z<0.3 with
current instruments
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Dark matter cosmology

Photon Flux [cm s ' GeV™']
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—— Background, EY'Z'7

— - 300 GeV neutralino adde
50 GeV neutralino added

Neutralino continuum gamma ray
flux towards galactic centre -

NFW model, AQ=10" sr
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6
10

6
100
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WIMPs (weakly interacting
massive particles)

» common candidates for dark
matter

» relic abundance left over from Big
Bang

» some theoretical WIMPs
(neutralinos, axions, etc) should
annihilate to gamma rays

» signal proportional to density.
Therefore look at:

- center of our galaxy

- dwarf spheroidals
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Variability

" Massive flare from the blazar PKS 2155-304:

1
5 B o

e

w
w
T]ITII]TIIIIII
,.llllllllllll

Jet and accretion powered
sources may he variable (in
flux and spectrum) due to
changes in accretion rate

(>200 GeV) [ 10° cm?s™] |

I1IITITIIII IITII]TTTT T
.lllllllllll.llllllllll.l

L AR o PSSR . ., - it | (ST
0=—30 50 80 100 =T —
rme-wossessoininl | ) Active Galactic Nucleii are a
= 'fughes, lfl-'awczynil:i.&Coggi 2004 o Classic exqmple
o » Binary systems and micro-
- : quasars
f>42— .'.. B °
E / Time structure can tell us:
o e e » the size and site of gamma-ray
\Y . .
’ production region
Synchrotron-Self-Compton (S5C) model of a
Blazar (a type of active galaxy), with injected )

flares
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OUTLINE

Gamma Rays

Context: gamma ray astrophysics
MeV gamma ray detection

GeV gumma ray detection

Gamma-ray interactions in the atmosphere




ME and HE Detection

Detecting High-Energy radiation with satellite
telescopes

- Detecting MeV gamma rays
- Detecting GeV gamma rays
- Source Modeling
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Blocked by Earth’s atmosphere

Can’t use lenses or mirrors!

» X-rays are the limit for focusing
optics (for the most part)

ypace-based Need to look to partice
Jetectors physics...

» Interaction of high-energy
particles with matter

L

- Compton telescopes

- pair conversion telescopes
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Compton Gamma-ray Observatory
1991 - 2000

Second of NASA’s “Great
Observatories” (after
Hubble, before Chandra)

» detect photons from 20
keV to 30 GeV

Two gamma-ray
detecdors:

» COMPTEL (Compton

Telescope)

» EGRET (Energetic Gamma
Ray Experiment

 EEEEE— Telescope]
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Compton Gamma-ray Observatory
1991 - 2000

Second of NASA’s “Great
Observatories” (after
Hubble, before Chandra)

A » detect photons from 20

EGRET Inshument kev |-o 30 Gev

EATEE Dolociker
Azzembry (1 ©i B)

Two gamma-ray
detecdors:

» COMPTEL (Compton
Telescope)

» EGRET (Energetic Gamma
Ray Experiment
Telescope)

Tuesday, July 3, 2012




Instruments

previous current-gen
COMPTEL EGRET Fermi-LAT
Energy Range| 08-30MeV |20 Mev-30 Gev| M€Y 3%
Energy o 0 0
Resolution =77 20% 107
peak A (m?) 0.005 0.15 1.0
FOV | sr 0.6 sr >?) sr
o o 3° (100 MeV)
PSF I 5° (100 MeV) 0.2° (10 GeV)
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Detecting MeV Gamma Rays
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Compton Telescopes

)

Gamma ray Compton scatters off
Projected 3//”/ ele“ro“ in de'edor l
,/’//

» energy E1 of scattered electron is

measured, along with its position P1 in the
detector

Scattered photon is seen in detector 2

» its energy E2 and position P2 are
measured

Reconstrudion:

» From this one can calculate the scattering
angle, which give the position on the sky
N———J Detector 1

within a cone about the position vector
E

» Summing event circles from many events:
signal will grow at correct position, other
parts of the ring contribute to background

» Energy =E1 + E2
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+OMPTEL

Anti-coincidence dome 4 Gamma-ray

Gamma-ray scattered;
light emitted.

A
liquid scintillator, NE 213A
PMTs Light recorded.
S
o
Gamma-ray absorbed,
BT light pulse emitted,
=7 5 andrecorded
\ 4 i z'}|

el ﬂ| Nal crystals
o l

PMTs

COMPTEL

Background rejection
via coincidence in
time between 2
deteciors

Study the sources of
MeV gamma rays

» Diftfuse emission
» compact sources
» pulsed emission, etc

» in particular, in this
energy range: gamma-
ray line spectroscopy
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Line emission with Comptel

Comptel map of the galaxy at 1.8 MeV
(radioactive decay of Al%%, indicating nucleosynthesis in SNRs)
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Line emission with Comptel

Comptel map of the galaxy at 1.8 MeV
(radioactive decay of Al%%, indicating nucleosynthesis in SNRs)
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Crab with COMPTEL

Galactic Anti-center region

I COMPTEL -
o0 |- Composite image

GRB 910503
{1-10 MaV)

Crab

G LAT
|

B PKS 0528+134

{3-30 MaV, May 1981)

20T GRO J0422+32/ 2
Nova Parsei

i {1-2 MeV, Aug 1992) -

220 200 180 160

52

Tuesday, July 3, 2012



Gamma-ray Satellites: GeV energies
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Pair-conversion Telescopes

The basic components:

4

Anti-coincidence detector
discriminates between charged
particles and photons. Charged
particles are vetoed.

Interaction medium provides a
environment for pair-production to
occur.

» Tracking Detectors track the

progress of the sub-particles in the
medium, providing the direction of
the primary

Calorimeter measures the energy
of the pair, which stop within it.

Anti-coincidence detector

Interaction medium for pair
production
-+

Detectors

Calorimeter
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Pair-conversion Telescopes

The basic components:

4

Anti-coincidence detector
discriminates between charged
particles and photons. Charged
particles are vetoed.

Interaction medium provides a
environment for pair-production to
occur.

» Tracking Detectors track the

progress of the sub-particles in the
medium, providing the direction of
the primary

Calorimeter measures the energy
of the pair, which stop within it.

Anti-cointidence detector

Interaction ‘nedium for pair
prec ¢ uction

D :tectors

Calorimeter
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CGRO: EGRET

ANTI-COINCIDENCE CLOSELY SPACED
SCINTILLATION SPARK CHAMBERS
DOME

WIDELY SPACED
SPARK CHAMBERS

TIME OF <
FLIGHT
COINCIDENCE
SYSTEM

\— PRESSURE VESSEL

-—— ELECTRONICS

Nal (TL) ENERGY
MEASUREMENT

COUNTER
Q Q—— GAS REPLENISHMENT
SYSTEM
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- The Sky with EGRET

cGRET All-Sky Gamma Ray Survey Above 100 MeV
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Modern Generation: Fermi GST

57




Y ) incoming gamma ray

electron-positron pair

Fermi LAT

=16x sensitivity of
EGRET

Better PSF, Energy
resolution

Wide FOV (nearly
flat exposure

100 Sec

1 Day

1 Year

—
o
(53]

Flux > 100 MeV ( photcm™= s7)

|
—
<

-]

—
<
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Pair-conversion Details...

Anti-coincidence plastic scintillators

» generate light when a charged particle
asses through them, but not a photon
= = p 9 p

» readout by PMTs

» provide anti-coincidence time veto for
cosmic rays (reject 99.97%)

Layers of heavy material (tungston)
» provide target nucleii for pair production
Silicon tracker strips

» between each tungston la

» provide time and x or y pdsifion when
particle ionizes atoms in the silicon

» alternating x and y strips give 2D position
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Pair-conversion Details...

Anti-coincidence plastic scintillators

» generate light when a charged particle
u passes through them, but not a photon

» readout by PMTs

» provide anti-coincidence time veto for
cosmic rays (reject 99.97%)

Layers of heavy material (tungston)

» provide target nucleii for pair production

Silicon tracker strips

| » between each tungston la

» provide time and x or y pdsifion when
particle ionizes atoms in the silicon

» alternating x and y strips give 2D position
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Pair-conversion Details...

Anti-coincidence plastic scintillators

» generate light when a charged particle
asses through them, but not a photon
B ] P 9 P

» readout by PMTs

» provide anti-coincidence time veto for
cosmic rays (reject 99.97%)

Layers of heavy material (tungston)

» provide target nucleii for pair production

Silicon tracker strips

» between each tungston la

» provide time and x or y pdsifion when
particle ionizes atoms in the silicon

» alternating x and y strips give 2D position
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Pair-conversion Details...

Calorimeter

» 12 “logs” of Csl crystal scintillators
in 8 layers per tower, alternating in
X and Y directions (a hodoscope)

» logs are covered with a material
that produces decreasing light
along the length, to provide
measure of position.

» photodiodes read out each “log”,
providing full 3-D image of energy
deposited

» above 3 GeV, showers no longer

contained, 100 GeV half leak out
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Tracker:

» have:

- binary hit pattern of each tracker
element

- initial estimate of direction from
calorimeter (sometimes)

» use iterative pattern recognition
algorithms to identify the particle track

- weighted towards solutions that point
toward the calorimeter’s centroid

- above 1 GeV, can reject solutions that
do not (below may have transverse
motion)

Event Reconstruction

PG
P
XX 7
e
e
e
e

~~ TKR vertex

XX X X

4"(
4
XK
i
W

PG
%
>58K X

TKR best tracks (1 and 2)

X X
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Event Reconstruction

get reconstruction parameters from each detector (anti-concidence + tracker
+ calorimeter)

» direction + energy + other reconstruction parameters

» want: probability that it is a gamma ray

Use classification tree analysis, trained to seledt gamma ray events:
» choose best reconstruction method

» provide probability of being a gamma ray

» reject probably background events

Events are finally dassified based on:

» goodness of energy recon,

» goodness of direction recon

End-user can choose cass (e.g. how much background rejection,
best PSF, ek)
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Machine learning algorithm(s) for cassifying
data with a set of parameters

» event X is parameterized as (x0,x1,x2...)
» Classes are chosen

» Training is done using a set of data with
known classes (simulations)

» Produces a tree of thresholds, with leaves that
give a measure of the classification variable

» cuts usually made on the distribution of the
classification parameter to distinguish signal
from background

Types of decision tree algorithms:
» Classification Tree
» Boosted Decision Tree, Regression Tree

» Random Forest

See e.g. TMVA, JBoost, Weka, etc¢ if you want
to try it out yourself...

Tuesday, July 3, 2012
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very simple example | tried with JBoost
jboost.sourceforge.net
using VHE gamma-ray data from HESS

’ 3: XMAX < 81.29509999999999

@/kék

- T oA
’1: HIL_MSW < 1.81265 ‘ ’2: HIL_MSL < 1.425185 ‘

4 HIL_MSW < 3.61519 25 XMAX <0.87511 ’ 10: HIL_MSL < 0.29888349999999997 11 HIL_MSL < 4.02231

$\. .D.

13 XMAX_ERR < 6.88596E-9 5 HIL_MSW < 0.970769

16 HIL_MSW < 2.4121050000000004

12 HIL_MSW < 5.436725 19 XMAX_ERR < 0.9082325 15 XMAX <286.017 22 XMAX < 111.447 24 HIL_MSW < 10.69595

43. 4\-& JA

6 HIL_MSL < -2.11465 7 XMAX <383.212

20 HIL_MSW < 1.382085

[

28 XMAX < 485.88

30 HIL_MSL < 4.02231 26 XMAX < 58.38595 17 HIL_MSW < 8.47362

/\. [\ [

@/é

8 XMAX_ERR < 0.02688925

A\.

14 XMAX < 161.2125 9 HIL_MSW < 0.293323 23 HIL_MS

A. A%.D.@

18 HIL_MSL < -0.5885055 27 HIL_MSW < 0.5103925 29 XMAX_ERR < 1.2314349999999998 ‘

25 s

probability

0.30

Gamma-Hadron sepration power

0.25F
0.20F

— Protons
—  Gammas

0.15
0.10
0.05

0.00

3.5

3.0

2.0

1.5

1.0

-14

-12
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Background Modeling

Residual Partice Background: (essentially isotropic)

» CRs can scatter off material around the anti-coincidence detector,
producing secondary gamma-rays that will be detected

» CRs can interact in the atmosphere, producing e+/e- that in some cases
come back out of the atmosphere. Most are rejected by the ADC, but
some may annihilate closeby

» Neutral secondary particles (gammas and neutrons) created in Earth’s
atmosphere by CR interactions can make it to the detector
(predominantly when looking close to Earth’s limb)

= 10° T T T T T T rrrrr T T rrrrr T T rrrrr
i =t Secondary p
W 102 - Secondary €* + €
o Neutrons __h'_'_'—-—._.__
g 10 Atmospheric y=rays o
> = = = EGB intensity —1
[0} 1 -
= :
w 10" —_— Prlmaryp
O — Nuclei (Z>1)
% 102 ——Primary-e* +¢&
X
W10 g == aa o
10
10 | saal

10°
Reconstructed energy [MeV]

Tuesday, July 3, 2012



Source Modeling
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Fermi All-Sky, 3 Years

-> FERMI (E>10GeV)

FERMI

EGRET
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EGRET -> FERMI  -> FERMI (E>10GeV)
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Fermi All-Sky, 3 Years

EGRET -> FERMI -> FERMI (E>10GeV) 67



Fermi All-Sky, 3 Years

@ Note that there is significant diffuse emission
obscuring the galactic plane

» interaction of galactic cosmic rays with target material:
- molecular clouds

- H2 regions

68
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Background Modeling

Diffuse Gamma Rays:

» a non-isotropic background

» generated by interactions of galactic cosmic rays
with target material: interstellar medium, giant
molecular clouds

» a significant component of the galactic gamma-
ray emission!

- must be modeled and subtracted to see individual
sources in the galaxy
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Diffuse Background Model




Diffuse Background Model

Step one: model the distribution of cosmic rays in the galaxy

» model propagation of charged particles and associated diffuse emission components in the galaxy
(e.g. GALPROP software Strong et al, http://galprop.stanford.edu/)

- nuclear physics + ionization and interaction losses

- diffuse gammas from interaction with matter: Bremsstrahlung, Inverse-Compton, and pion decay

Tuesday, July 3, 2012
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Diffuse Background Model

Step one: model the distribution of cosmic rays in the galaxy

» model propagation of charged particles and associated diffuse emission components in the galaxy
(e.g. GALPROP software Strong et al, http://galprop.stanford.edu/)

- nuclear physics + ionization and interaction losses

- diffuse gammas from interaction with matter: Bremsstrahlung, Inverse-Compton, and pion decay

Step two: model the distributions of interstellar matter (target material)

» HI surveys (neutral hydrogen)
- in cases where HI column density is under or over estimated, use IR observations of dust to correct it
» CO surveys as a tracer of H2 (molecular hydrogen)

- e.g. '?CO, J=1-0 transition line can be used to estimate the amount of HII.

= X=Nu2/Wco =1.8x10°%cm2 K "km™' s
[Dame et al 2001]

» Calculate gamma-ray emissivity
- fit to number of counts (simple)

- calculate CR density with numerical model (Galprop) and multiply by cross-section (fancier)
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CO Surveys

Dame et al. 2001, 2CO survey

ey <= e - v Ak e
F"T’*"'"‘T’"'"‘f"'"’r':“r"'wr’“"'“'ﬁ"""*'T':j
= :- '. °
-~k " velocity (related
_ | to distance by
o S e S el B e e the ga[actic e e e i s
Z "y rotation curve) e
B oa\['pl,l' ”"" ‘i' : "-’;‘C‘,', : f! r%\ : .'t'?“x'
S At A";O';?G J " s ST R R, ® ,_'__“ “ &
- G e i o ».N‘"“’“. f,\ L’e IO Y gl AR g A )
: ll./“ Ve » oagc - ) \A.":-v\ —— e ) v e ‘-__ 3 . . LA
R, S S N A T WA Sl P i
B SV o 2 ': e ; A g . "~
3 r \l X

Galactic Longitude

Tuesday, July 3, 2012



J-M. Casandiian

Fermi Background Components
HI Column Density

(LAB) in geocentric  1;-q (Dame)

rings
HI 0-4 kpc CO 0-4 kpc Dark Gas patch Templates

HI 4-5.5 kpc CO 4-5.5 kpc IC :Ga[prop) patch
HI 5.5-7 kpc CO 5.5-7 kpc COOP |
SO
HI 7-10 kpc CO 7-10 kpc Bubble Exposure
o« D
HI 10-16.5 kpc CO 10-16.5 kpc patch Sun
<P 9D

HI 16.5-50 kpc CO 16.5-50 kpc patch Limb
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Fermi Sensitivity

1-year exposure time
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Signal Extraction

Basi¢ principle: model (in space and energy) everything you know
about in the field-of-interest.

» The residual particle background
» the diffuse background

» For all known compact sources:
- basic source morphology
- energy spectrum (may vary with position)

- unknown parameters left free, can vary in fitting procedure

How to make a TS

Fit your model and subtract, looking for residuals e

for point-like sou
» If a residual is seen, try to model it!

» May use multi-wavelength data to constrain parameters, morphology

» Compute a “test statistic” for each model component (significance of model

fit)

Iterate until no significant residuals.
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Bubbles

video from NASA, www.nasa.gov/goddard 75
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Bubbles

Smoothed Fermi all-sky map

video from NASA, www.nasa.gov/goddard 75
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Source reconstruction

Ibl > 30° SFD dust - - - -

[ Simple disk IC template Uniform .«..oooeeen ] ven WIi u pre-‘om pl'|e
I Loopl—:

o
moenise ——-- 1 model for the diffuse
" GALPROP =" decay - - - -
- GALPROP brem —.--—--

L2 ELIS GALPROPIC —...—... ® ® d I' 'I'.
0oL e ;| emission, detecting new
X R\I\\; _\.\\\;\'--.., —— JNRE ST i PY I. dl
BoR sources Is complicated:

» energy-dependent PSF

E? dN/JE [GeV/cm?/s/sr]
S
b

» source confusion

108

10
Photon Energy [GeV]
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Fermi two-year all-sky map
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Fermi two-year all-sky map
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Fermi two-year all-sky map
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Fermi Crab Nebula
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Crab Nebula Variability

@ Flares seen from Crab
region

» up to 30x quiescent flux!

Nleldaakel Flare State » Not expected from theory...

April 2011 » Not related to the pulsed

emission: can be cut out in
time (look off-pulse)

(‘""! r"' ula .

» No correlation in X-rays

(Chandra)

@ Emission region must bhe
close to pulsar

» possible sudden
G » restructuring of strong B-
fields near the pulsar

79
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What has Fermi found: The LAT two-year catalog

Supernova

remnants Globular clusters,
high-mass binaries,

& \ / normal galaxies
Non-blazar \ and more

active galax1es N

Pulsars 4%

1%

Unknown Blazars
31% 57%

Credit: NASA/Goddard Space Flight Center
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OUTLINE

Gamma Rays

Context: gamma ray astrophysics
MeV gamma ray detection

GeV gumma ray detection

Gamma-ray interactions in the atmosphere




Gamma Rays in the Atmosphere

Prelude to the detection of TeY gamma rays
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Overview

What we’ve discussed so far:

» reminder of simple particle
physics

» astrophysical sources of gamma

Fermi-GST

é radiation Er;o
g
Satellite- » detection of ME and HE whi
@ gamma-rays with CGRO and
g
&,
C

Next: even higher-energies
(VHE gammas)

Need to fully cover the inverse-
Compton/pion-decay part of
the non-thermal spectrum
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Recall:

At high-energies, steep power-law photon
specira

» e.g. flux = E2°
» due to steep underlying particle spectra

» with the effective area of Fermi (1m?), count rate
of Crab Nebula above 1 TeV would be 107 Hz!

- a gamma ray detected every few months!
Need much larger effective areas!

Can’t do it from space!
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VHE Gammas

As we move to higher energies:

» the interaction of galactic cosmic rays with
molecular clouds (e.g. the diffuse gamma-ray
background) goes away due to the steep
spectrum

- (at least within the detection limits of current
instruments)

» Galactic plane is therefore mostly free of diffuse
astrophysical background!

» but, have large particle background due to
detection technique
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The HESS Galactic Plane Survey
E>300 GeV "

we . ... ¢ ¥ % i

onN b

OND OV —b b

L

B
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Ground-based Gamma-ray detection part 1:
Extensive Air Showers

Tuesday, July 3, 2012



Questions...




Questions...

Earth is being constantly hombarded with high-
energy radiation: particdes and gamma-rays




Questions...

Earth is being constantly hombarded with high-
energy radiation: particdes and gamma-rays

Though we might get a sunburn outside from UV
light, we don’t need to put on radiation or
gamma-ray-proof outerwear!




Questions...

Earth is being constantly hombarded with high-
energy radiation: particdes and gamma-rays

Though we might get a sunburn outside from UV
light, we don’t need to put on radiation or
gamma-ray-proof outerwear!

Clearly, our atmosphere absorbs this radiation...




Questions...

Earth is being constantly hombarded with high-
energy radiation: particdes and gamma-rays

Though we might get a sunburn outside from UV
light, we don’t need to put on radiation or
gamma-ray-proof outerwear!

Clearly, our atmosphere absorbs this radiation...

So, why would we try to put gamma-ray
detectors on the ground?




Questions...

Earth is being constantly hombarded with high-
energy radiation: particdes and gamma-rays

Though we might get a sunburn outside from UV
light, we don’t need to put on radiation or
gamma-ray-proof outerwear!

Clearly, our atmosphere absorbs this radiation...

So, why would we try to put gamma-ray
detectors on the ground?

What happens when a high-energy particle hits
the atmosphere?




Pair Production

Y — ete

Bremsstrahlung

hi=EyEp "
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Cascades of sub-particles created
when an incident high-energy
partide enters Earth’s atmosphere
and interacts with an air nuceus

Extensive Air These cascades may be initiated by:

[ R v

showers » Photons (as long as they have
> A enough energy to penetrate, e.g.

gamma rays)

» Charged particles (i.e. cosmic rays)

See lecture by Ralf Engles for the
details of EAS’s, but here is a short
intro...
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" Electromagnetic Showers

Pair-Production

«Bremsstrahlung

«Pair-Production

\e\_




Hadronic showers

7t0 TT—
T+
Y Y Nucleon Cascade
e_
e+ e— W
c+ :
U+
EM Cascade
EM Cascade _
VM
Ve
c+ e—
Y
Y e+
EM Cascade

EM Cascade
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Hadronic showers

Key points:

» Cosmic ray shows
produce EM sub-
showers

» Higher transverse
momentum due to
pions

» Muons are produced
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Animation b

K. Bernlohr,
2000
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Semi-empirical model for EM
cascades

™1 N PR » Do we need one? Not really,
1e Heitler . /
since we now have powerful

MOl or EM computers, but it’'s useful to

visualize the basic properties

showers
1CILIC]T 1 54)

» In 1954, detailed particle
simulation was impossible

- number of particles to track can
exceed 107
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The Heitler model

Simple assumptions:

» two processes: pair
production + single-particle
bremsstrahlung

» distance between both
: interactions is a fixed length
dsiit (here “length”=g/cm?)

g /% Y;\ ¢ \: » When the energy of a

particle drops below a
critical energy Ecit, the
cascade stops abruptly
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Heitler Model

dsplit = In 2)\7“

= Distance over which electron
loses half its energy via
Y radiation

n=1

After n steps,

/\ I split shower depth
n=2 T = Ndgplit = A, In 2
spht total number of partlcles (e+,e-,y)
— 2” p— €>\r

What IS the maximum shower
“size” (total number of particles)?
Occurs when all particles have E=Ecit

Nmax — EO/Ecrit

\
e e—/Y
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Heitler Model

dsplit — [ 2)\7»
T = Ndgplit = A, In 2
N = 2" — e>r

% Nmax — EO/Ecrit

How deep is Nmax? When n=ncit,
all particles have Ecrit:

/\ IdSp“t Pmae =2
EO :zncrit
IiSP“t Eerit
E
[% 5\ / In chit —Tepit 1N 2

Lmax —TNcrit >\'r In 2
Fig
Ecrit

n=1

-
|
)
Vbi\

\/

-
. +

=\, In
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Heitler Model

In Atmosphere:

» Ar= 40 g/cm?

» Ecrit = 85 MeV

» total depth of atmosphere =1000 g/cm?
» density profile:

_ —h/ho h
p=poe "/ T = / p(h")dh'
h() ~ 8 km 0

- therefore po = 0.00125

- height of first interaction: = 20 km
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I TeV gamma
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Heitler Model

How good is it?
» doesn’t account for particle loss
» assumes abrupt stop of shower after Ei

» assumes single-photon emitted during
bremsstrahlung

- reality is several, so overestimates lepton fraction

- approximately: Ny = 10 Ne (can be used as a
simple correction factor)

» still, actually not far from detailed simulations
and reality!
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Showers are deflected by the
Lorentz force:

Magnetic » B = [H,0,Z]
~1eld effects | - v

» proportional to the field
perpendicular to the
observation direction

)+ sin? O sin® 9) — HZsin 0 cos ¢+ 2%sin? ¢

N
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no strong B-field effect
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Zenith Dependence of 1 TeV Gamma Ray
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Gamma-rays (and cosmic rays) are
absorbed by the atmosphere

» but the information is not lost

» extensive air showers give us a wealth
of knowledge about the incident
particle, if we know some basic
particle physics

The atmosphere acts as both a
calorimeter and a tracking medium

» the principle is not so different from
space-based detectors, or even from
those at particle accelerators

» We can leverage this to build a
detector with much larger effective
area than would be practical in an
enclosed system.
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Using air showers to detect primary
gamma rays and reject cosmic rays

» using Earth’s atmosphere as part of
a gamma ray telescope! (the
imaging atmospheric Cherenkov
technique)

» methods for reconstructing the
properties of a shower and gammaoa-
ray from shower information

» Alternative detector methods

» details of analysis of VHE gamma
ray sources:

- background modeling

- signal extraction




