The theory of Diffusive Shock Acceleration

www.cnrs.fr

Stefano Gabici APC, Paris

Supersonic motion + medium -> Shock Wave

Supersonic motion + medium -> Shock Wave

(SuperNova ejecta) (InterStellar Medium)

velocity of SN ejecta up to $v_{ej} \approx 30000 \text{ km/s}$ sound speed in the ISM $c_s = \sqrt{\gamma \frac{kT}{m}} \approx 10 \left(\frac{T}{10^4 K}\right)^{1/2} \text{ km/s}$

Mach number

$$\mathcal{M} = \frac{v}{c_s} >> 1$$

strong shocks

Shock rest frame

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\boxed{\frac{u_1}{u_2} = \frac{\varrho_2}{\varrho_1} = r}$$
compression ratio

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\varrho_1 u_1^2 + p_1 = \varrho_2 u_2^2 + p_2$$

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\varrho_1 u_1^2 + p_1 = \varrho_2 u_2^2 + p_2$$

$$\downarrow$$

$$\varrho_1 u_1^2 \left(1 + \frac{p_1}{\varrho_1 u_1^2} \right)$$

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\boxed{\frac{u_1}{u_2} = \frac{\varrho_2}{\varrho_1} = r}$$
compression ratio

$$\begin{array}{c}
\varrho_1 u_1^2 + p_1 = \varrho_2 u_2^2 + p_2 \\
\downarrow \\
\varrho_1 u_1^2 \left(1 + \frac{p_1}{\varrho_1 u_1^2} \right) = \varrho_1 u_1^2 \left(1 + \frac{c_{s,1}^2}{\gamma u_1^2} \right)
\end{array}$$

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\begin{array}{c}
\varrho_{1}u_{1}^{2} + p_{1} = \varrho_{2}u_{2}^{2} + p_{2} \\
\downarrow \\
\varrho_{1}u_{1}^{2}\left(1 + \frac{p_{1}}{\varrho_{1}u_{1}^{2}}\right) = \varrho_{1}u_{1}^{2}\left(1 + \frac{c_{s,1}^{2}}{\gamma u_{1}^{2}}\right) = \varrho_{1}u_{1}^{2}\left(1 + \frac{1}{\gamma \mathcal{M}^{2}}\right)
\end{array}$$

Mass conservation

$$\begin{array}{c}
\varrho_{1}u_{1}^{2} + \varkappa = \varrho_{2}u_{2}^{2} + p_{2} \\
\downarrow \\
\varrho_{1}u_{1}^{2}\left(1 + \frac{p_{1}}{\varrho_{1}u_{1}^{2}}\right) = \varrho_{1}u_{1}^{2}\left(1 + \frac{c_{s,1}^{2}}{\gamma u_{1}^{2}}\right) = \varrho_{1}u_{1}^{2}\left(1 + \frac{1}{\gamma u_{1}^{2}}\right)$$

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\varrho_1 u_1^2 + \not{} = \varrho_2 u_2^2 + p_2$$

Mass conservation

$$\varrho_1 \ u_1 = \varrho_2 \ u_2$$

$$\frac{\varrho_1 u_1^2}{\varrho_2 u_2^2} + \not = \underbrace{\frac{\varrho_2 u_2^2 + p_2}{\varrho_2 u_2^2}}_{\varrho_2 u_2^2} \longrightarrow \frac{u_1}{u_2} = 1 + \frac{p_2}{\varrho_2 u_2^2}$$

Mass conservation

$$\frac{\varrho_1 u_1^2}{\varrho_2 u_2^2} + \not = \frac{\varrho_2 u_2^2 + p_2}{\varrho_2 u_2^2} \longrightarrow \frac{u_1}{u_2} = 1 + \frac{p_2}{\varrho_2 u_2^2}$$

$$\frac{u_1}{u_2} = 1 + \frac{1}{\gamma \mathcal{M}_2^2}$$

Mass conservation

 $r^2 = 1 +$ $\overline{\mathcal{M}_2^2}$

What about down-stream temperature?

$$\frac{1}{5} = \mathcal{M}_2^2 = \frac{u_2^2}{c_{s,2}^2}$$

What about down-stream temperature?

$$\frac{1}{5} = \mathcal{M}_2^2 = \frac{u_2^2}{c_{s,2}^2} = \frac{u_1^2}{16 \ c_{s,2}^2}$$

What about down-stream temperature?

$$\frac{1}{5} = \mathcal{M}_2^2 = \frac{u_2^2}{c_{s,2}^2} = \frac{u_1^2}{16 \ c_{s,2}^2} = \frac{mu_1^2}{16 \ \gamma \ k_b T_2}$$
$$k_b T_2 = \frac{3}{16} \ mu_1^2$$

- compresses moderately the gas
- makes the supersonic gas subsonic

converts bulk energy into internal energy

 $\mathcal{M} >> 1$ $\frac{\varrho_2}{\varrho_1} = r = 4$ $\mathcal{M}_1 >> 1 \to \mathcal{M}_2 = \frac{1}{\sqrt{5}} < 1$ $k_b T_2 = \frac{3}{16} (m u_1^2)$

Weak shock:

smaller compression and moderate gas heating

 $\mathcal{M}\gtrsim 1$

r < 4 $T_2 \gtrsim T_1$

Shock waves + Magnetic fields

Shock rest frame

• --> relativistic particle of mas m (<< M_{cloud}) and energy E

• --> relativistic particle of mas m (<< M_{cloud}) and energy E

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity u1-u2

Symmetry

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an head-on collision with a plasma moving with velocity u1-u2

Asymmetry

(Infinite and plane shock:) Upstream particles always return the shock, while downstream particles may be advected and never come back to the shock

The particle has initial (upstream) energy E and initial momentum p

The particle "sees" the downstream flow with a velocity: $v=u_1-u_2$ and a Lorentz factor: γ_v

In the downstream rest frame the particle has an energy (Lorentz transformation):

$$E' = \gamma_v (E + p \, \cos(\theta) \, v)$$

$$E' = \gamma_v (E + p \cos(\theta) v)$$

$$^{
m \diamond}$$
 the shock is non-relativistic -----> $\gamma_v=1$

 $^{\diamond}$ we assume that the particle is relativistic --> E=pc

$$E' = E + \frac{E}{c} v \cos(\theta)$$
 $\left[\frac{\Delta E}{E} = \frac{v}{c} \cos(\theta) \right]$

energy gain per half-cycle (up->down-stream)
ASSUMPTION: particles up (down) - stream of the shock are rapidly isotropized by magnetic field irregularities

» # of particles between heta and $heta+{
m d} heta$ prop. to ----> $\sin(heta){
m d} heta$

 \triangleright rate at which particles cross the shock prop. to ---> $c \;\cos(heta)$

probability for a particle to cross the shock:

$$p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$$

 $p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$

$$A \int_0^{\frac{\pi}{2}} \mathrm{d}\theta \cos(\theta) \sin(\theta) \equiv 1$$

 $p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$

The total probability must be equal to 1

 $\sin(\theta) = t$

 $p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$

$$A \int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \cos(\theta) \sin(\theta) \equiv 1$$
$$\downarrow$$
$$A \int_{0}^{1} \mathrm{d}t \ t$$

$$\sin(\theta) = t$$
$$dt = \cos(\theta) d\theta$$

 $p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$

$$A \int_{0}^{\frac{\pi}{2}} d\theta \cos(\theta) \sin(\theta) \equiv 1 \qquad \qquad \sin(\theta) = t$$
$$dt = \cos(\theta) d\theta$$
$$A \int_{0}^{1} dt \ t = A \left| \frac{t^{2}}{2} \right|_{0}^{1} = \frac{A}{2}$$

 $p(\theta) \propto \sin(\theta) \cos(\theta) \mathrm{d}\theta$

$$A \int_{0}^{\frac{\pi}{2}} d\theta \cos(\theta) \sin(\theta) \equiv 1 \qquad \qquad \sin(\theta) = t$$
$$dt = \cos(\theta) d\theta$$
$$A \int_{0}^{1} dt \ t = A \left| \frac{t^{2}}{2} \right|_{0}^{1} = \frac{A}{2}$$

normalized probability:
$$p(\theta) = 2\sin(\theta)\cos(\theta)\mathrm{d} heta$$

(1) energy gain per half-cycle:
 (up->down-stream)

$$\boxed{\frac{\Delta E}{E} = \frac{v}{c}\cos(\theta)}$$

(2) probability to cross the shock:

$$p(\theta) = 2\sin(\theta)\cos(\theta)d\theta$$

(1) energy gain per half-cycle:
 (up->down-stream)

$$\left(\frac{\Delta E}{E} = \frac{v}{c}\cos(\theta)\right)$$

(2) probability to cross the shock:

$$p(\theta) = 2\sin(\theta)\cos(\theta)d\theta$$

The average gain per half-cycle $\,<\,$

$$rac{\Delta E}{E}$$
 > is (1) averaged over the

probability distribution (2).

$$<\frac{\Delta E}{E}> = 2\left(\frac{v}{c}\right)\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,\cos^{2}(\theta)\sin(\theta)$$

$$<\frac{\Delta E}{E}> = 2\left(\frac{v}{c}\right)\int_{0}^{\frac{\pi}{2}}\mathrm{d}\theta\,\cos^{2}(\theta)\sin(\theta)$$

$$<\frac{\Delta E}{E}> = 2\left(\frac{v}{c}\right)\int_{0}^{\frac{\pi}{2}} \mathrm{d}\theta \,\cos^{2}(\theta)\sin(\theta)$$

$$\cos(\theta) = t$$
$$dt = -\sin(\theta)d\theta$$

$$= -2\left(\frac{v}{c}\right)\int_{0}^{-1} \mathrm{d}t \ t^{2} = -2\left(\frac{v}{c}\right)\left|\frac{t^{3}}{3}\right|_{0}^{-1} = \frac{2}{3}\left(\frac{v}{c}\right)$$

$$< \frac{\Delta E}{E} > = 2 \left(\frac{v}{c}\right) \int_0^{\frac{\pi}{2}} d\theta \cos^2(\theta) \sin(\theta) \qquad \frac{\cos(\theta) = t}{dt = -\sin(\theta) d\theta}$$

$$= -2\left(\frac{v}{c}\right)\int_{0}^{-1} \mathrm{d}t \ t^{2} = -2\left(\frac{v}{c}\right)\left|\frac{t^{3}}{3}\right|_{0}^{-1} = \frac{2}{3}\left(\frac{v}{c}\right)$$

full cycle: (up -> down) and (down -> up) : SYMMETRY

$$\left(< \frac{\Delta E}{E} >_{up \to down} = < \frac{\Delta E}{E} >_{down \to up} \right)$$

Energy gain per cycle (up -> down -> up):

$$\left\{ < \frac{\Delta E}{E} > = \frac{4}{3} \left(\frac{v}{c} \right) = \frac{4}{3} \left(\frac{u_1 - u_2}{c} \right) \right\}$$

First-order (in v/c) Fermi mechanism

What happens after n cycles?

$$< \frac{\Delta E}{E} > = \frac{4}{3} \left(\frac{v}{c}\right)$$

Diffusive Shock Acceleration What happens after n cycles? $\frac{E_{i+1} - E_i}{E_i} = \langle \frac{\Delta E}{E} \rangle = \frac{4}{3} \left(\frac{v}{c} \right)$ particle energy at i-th cycle

What happens after n cycles?

What happens after n cycles?

What happens after n cycles?

Particles can escape downstream!

What happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are $\,N=N_0P^k\,$ particles with energy above $\,E=E_0\beta^k\,$

What happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are
$$N = N_0 P^k$$
 particles with energy above $E = E_0 \beta^k$
 $\log\left(\frac{N}{N_0}\right) = k \log P \qquad \log\left(\frac{E}{E_0}\right) = k \log \beta$

What happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are
$$N = N_0 P^k$$
 particles with energy above $E = E_0 \beta^k$
 $\log\left(\frac{N}{N_0}\right) = k \log P \qquad \log\left(\frac{E}{E_0}\right) = k \log \beta$

$$\frac{\log(N/N_0)}{\log(E/E_0)} = \frac{\log P}{\log \beta}$$

What happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

Integral spectrum

Differential spectrum

$$N(>E) = N_0 \left(\frac{E}{E_0}\right)^{\frac{\log P}{\log \beta}} \longleftrightarrow \qquad n(E) \propto E^{-1 + \frac{\log P}{\log \beta}}$$

We need to determine the value of P -> probability that the particle remains within the accelerator after each cycle

It is easier to calculate the probability (1-P) that the particle leaves the accelerator after each cycle

It is easier to calculate the probability (1-P) that the particle leaves the accelerator after each cycle

It is easier to calculate the probability (1-P) that the particle leaves the accelerator after each cycle

R_{in} -> # of particles per unit time (rate) that begin a cycle

R_{out} -> # of particles per unit time (rate) that leave the system

It is easier to calculate the probability (1-P) that the particle leaves the accelerator after each cycle

R_{in} -> # of particles per unit time (rate) that begin a cycle

R_{out} -> # of particles per unit time (rate) that leave the system

$$\frac{R_{out}}{R_{in}} = 1 - P$$

Let's calculate R_{in}...

n -> density of accelerated particles close to the shock

Let's calculate R_{in}...

n -> density of accelerated particles close to the shock

n is isotropic: $dn = \frac{n}{4\pi} d\Omega$ velocity across the shock: $c \cos(\theta)$ UP DOWN

$$R_{in} = \int_{up \to down} \mathrm{d}n \ c \ \cos(\theta)$$

Let's calculate R_{in}...

n -> density of accelerated particles close to the shock

$$R_{in} = \int_{up \to down} \mathrm{d}n \ c \ \cos(\theta) = \frac{n \ c}{4\pi} \int_0^{\overline{2}} \cos(\theta) \sin(\theta) \mathrm{d}\theta \int_0^{2\pi} \mathrm{d}\psi = \left(\frac{1}{4} \ n \ c\right)$$

Let's calculate R_{in}...

n -> density of accelerated particles close to the shock

 $R_{out} = (n \ u_2)$

...and Rout -> particles lost (advected) downstream

The probability of non returning to the shock (1-P) is:

$$1 - P = \frac{R_{out}}{R_{in}} = \frac{n \ u_2}{\frac{1}{4} \ n \ c} = \frac{u_1}{c} << 1$$

$$most of the particles perform many cycles$$

The probability of non returning to the shock (1-P) is:

$$1 - P = \frac{R_{out}}{R_{in}} = \frac{n \ u_2}{\frac{1}{4} \ n \ c} = \frac{u_1}{c} << 1$$

$$most of the particles perform many cycles$$

Summarizing...

return probability ->
$$P = 1 - \frac{u_1}{c}$$

energy gain per cycle->
$$\beta = 1 + \frac{4}{3} \frac{u_1 - u_2}{c} = 1 + \frac{u_1}{c}$$

$$n(E) \propto E^{-1 + \frac{\log P}{\log \beta}}$$

$$n(E) \propto E^{-1 + \frac{\log P}{\log \beta}}$$

$$\log P = \log \left(1 - \frac{u_1}{c}\right) \sim -\frac{u_1}{c}$$

$$n(E) \propto E^{-1 + \frac{\log P}{\log \beta}}$$

$$\log P = \log \left(1 - \frac{u_1}{c}\right) \sim -\frac{u_1}{c}$$

$$\log \beta = \log \left(1 + \frac{u_1}{c}\right) \sim \frac{u_1}{c}$$
$$n(E) \propto E^{-1 + \frac{\log P}{\log \beta}}$$

$$\log P = \log \left(1 - \frac{u_1}{c}\right) \sim -\frac{u_1}{c}$$

$$\log \beta = \log \left(1 + \frac{u_1}{c}\right) \sim \frac{u_1}{c}$$

UNIVERSAL SPECTRUM

Assumptions made:

🥯 strong shock

isotropy both up and down-stream

test-particle (CR pressure negligible)

-> UNIVERSAL SPECTRUM

 $n(E) \propto E^{-2}$

It doesn't depend on:

- shock velocity/Mach number
- 🧆 gas density/pressure
- magnetic field intensity and/or structure
- diffusion coefficient ...

Assumptions made:

strong shock SNR shocks

isotropy both up and down-stream

test-particle (CR pressure negligible)

-> UNIVERSAL SPECTRUM

🗹 turbulent B field

efficient CR acceleration

$$n(E) \propto E^{-2}$$

It doesn't depend on:

- shock velocity/Mach number
- 🧆 gas density/pressure
- magnetic field intensity and/or structure
- diffusion coefficient ...

$\begin{array}{l} \text{Diffusive Shock Acceleration} \\ l_d \approx \sqrt{D \ t_d} \\ l_d = u_1 \ t_d \end{array} \right\} \quad u_1 \ t_d = \sqrt{D \ t_d} \quad \rightleftharpoons \quad \left(\begin{matrix} \bullet & D \\ u_1^2 \\ u_1 \end{matrix} \right) \\ \hline & l_d \approx \frac{D}{u_1} \end{array}$

downstream: the same argument can be used to get the same result

 t_d remains a good order-of-magnitude estimate for the time of a cycle

Diffusive Shock Acceleration $\left.\begin{array}{c}l_d \approx \sqrt{D \ t_d}\\l_d = u_1 \ t_d\end{array}\right\} \quad u_1 \ t_d = \sqrt{D \ t_d} \quad \rightleftharpoons \quad \left(t_d \approx \frac{D}{u_1^2}\right)$ \blacktriangleright $l_d \approx \frac{D}{u_1}$

downstream: the same argument can be used to get the same result

 t_d remains a good order-of-magnitude estimate for the time of a cycle

D increases with E E increases at each cycle

the last cycle is the longest

Diffusive Shock Acceleration $\left.\begin{array}{l}l_d \approx \sqrt{D \ t_d}\\l_d = u_1 \ t_d\end{array}\right\} \quad u_1 \ t_d = \sqrt{D \ t_d} \quad \rightleftharpoons \quad \left(t_d \approx \frac{D}{u_1^2}\right)$ $\blacktriangleright \quad l_d \approx \frac{D}{u_1}$

downstream: the same argument can be used to get the same result

 t_d remains a good order-of-magnitude estimate for the **acceleration time**

D increases with E

E increases at each cycle

the last cycle is the longest

Maximum energy for the accelerated particles:

$$\begin{array}{|c|c|}\hline \textbf{acceleration time} & t_d \approx \frac{D}{u_1^2} \end{array}$$

Maximum energy for the accelerated particles:

Maximum energy for the accelerated particles:

The maximum energy: 🧠 increases with time

depends on: age, shock speed, magnetic field intensity and structure (through D), ... 🤏 it is NOT universal!

Diffusive Shock Acceleration: weak shocks

Homework: what happens if the shock is NOT strong?

$$\left(\begin{array}{ccc} \text{Solution:} & n(E) \propto E^{-\alpha} & \alpha &= \frac{r+2}{r-1} \end{array}\right)$$
Examples: (a) r = 4 --> alfa = 2
(a) r < 4 --> alfa > 2
(b) r = 3 --> alfa = 3

Acceleration is less efficient at weak shocks

Non-linear Diffusive Shock Acceleration

Non-linear DSA: what happens if the acceleration efficiency is high (~1)?

shock acceleration is intrinsically efficient → cosmic ray pressure is slowing down the upstream flow → formation of a precursor

Non-linear Diffusive Shock Acceleration

Non-linear DSA: what happens if the acceleration efficiency is high (~1)?

Diffusive Shock Acceleration at SuperNova Remnants and the origin of Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest that CR sources have to inject in the Galaxy a spectrum close to E⁻².
(2) Strong shocks at SNRs can indeed accelerate E⁻² spectra.
-> Thus SNRs are good candidates as sources of Galactic CRs.

Diffusive Shock Acceleration at SuperNova Remnants and the origin of Galactic Cosmic Rays

Diffusive Shock Acceleration at SuperNova Remnants and the origin of Galactic Cosmic Rays

 E^{-2} is the spectrum at the shock, not the one released in the ISM!