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Shock waves
Supersonic motion + medium -> Shock Wave

(SuperNova ejecta)  (InterStellar Medium)

velocity of SN ejecta up to

sound speed in the ISM cs =
�

γ
kT

m
≈ 10

�
T

104K

�1/2

km/s

vej ≈ 30000 km/s

Mach number strong shocksM =
v

cs
>> 1
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Shock waves
A (strong) shock:

 compresses moderately the gas

 makes the supersonic gas subsonic

 converts bulk energy into internal energy 

�2

�1
= r = 4

M1 >> 1→M2 =
1√
5

< 1

kbT2 =
3
16

mu2
1

Weak shock:

M >> 1

M � 1

 smaller compression and moderate gas heating r < 4 T2 � T1



Shock waves + Magnetic fields

Shock
Up-stream Down-stream

u1
u2

--
>

B

B

B

B

B

B

Shock rest frame



Diffusive Shock Acceleration

Shock
Up-stream Down-stream--
>

B

B

B

B

B

B

Up-stream rest frame

u1

--> relativistic particle of mas m (<< Mcloud) and energy E

u1 − u2

a

b

Ea = Eb



Diffusive Shock Acceleration

Shock
Up-stream Down-stream--
>

B

B

B

B

B

B

Down-stream rest frame
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u1 − u2

a

b

Ea = Eb
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head-on collision with a plasma moving with velocity u1-u2
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Diffusive Shock Acceleration
Symmetry

u1 − u2 u1 − u2

Every time the particle crosses the shock (up -> down or down -> up), it undergoes an 
head-on collision with a plasma moving with velocity u1-u2

Asymmetry

(Infinite and plane shock:) Upstream particles always return the shock, while 
downstream particles may be advected and never come back to the shock

Up-stream Down-stream



Diffusive Shock Acceleration

u1 − u2

xϑ

The particle has initial (upstream)
energy E and initial momentum p

UP DOWN

The particle “sees” the downstream flow with a velocity:               

and a Lorentz factor: 

v = u1 − u2

γv

In the downstream rest frame the particle has an energy (Lorentz transformation):

E� = γv(E + p cos(θ) v)



Diffusive Shock Acceleration

E� = γv(E + p cos(θ) v)

 the shock is non-relativistic ----------------->

 we assume that the particle is relativistic --> 

γv = 1

E = pc

E� = E +
E

c
v cos(θ)

∆E

E
=

v

c
cos(θ)

energy gain per half-cycle
(up->down-stream)



Diffusive Shock Acceleration

ASSUMPTION: particles up (down) - stream of the shock are rapidly 
isotropized by magnetic field irregularities

θ0 < θ <
π

2

dθ

 # of particles between    and               prop. to ---->

 rate at which particles cross the shock prop. to ---> 

θ + dθθ sin(θ)dθ

c cos(θ)

c

p(θ) ∝ sin(θ) cos(θ)dθprobability for a particle to cross the shock:



Diffusive Shock Acceleration
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The total probability must be equal to 1
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Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

� π
2

0
dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

A

� 1

0
dt t = A

����
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2

����
1

0

=
A

2



Diffusive Shock Acceleration

p(θ) ∝ sin(θ) cos(θ)dθ

The total probability must be equal to 1

A

� π
2

0
dθ cos(θ) sin(θ) ≡ 1

sin(θ) = t

dt = cos(θ)dθ

A

� 1

0
dt t = A

����
t2

2

����
1

0

=
A

2

p(θ) = 2 sin(θ) cos(θ)dθnormalized probability:



Diffusive Shock Acceleration

∆E

E
=

v

c
cos(θ)

(1) energy gain per half-cycle:
(up->down-stream)

p(θ) = 2 sin(θ) cos(θ)dθ(2) probability to cross the shock:



Diffusive Shock Acceleration

∆E

E
=

v

c
cos(θ)

(1) energy gain per half-cycle:
(up->down-stream)

p(θ) = 2 sin(θ) cos(θ)dθ(2) probability to cross the shock:

<
∆E

E
>The average gain per half-cycle                         is (1) averaged over the 

probability distribution (2).

<
∆E

E
> = 2

�v
c

� � π
2

0
dθ cos2(θ) sin(θ)
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Diffusive Shock Acceleration

<
∆E

E
> = 2

�v
c

� � π
2

0
dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ



Diffusive Shock Acceleration

<
∆E

E
> = 2

�v
c

� � π
2

0
dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ

= −2
�v
c

�� −1

0
dt t2 = −2

�v
c

� ����
t3

3

����
−1

0

=
2

3

�v
c

�



Diffusive Shock Acceleration

<
∆E

E
> = 2

�v
c

� � π
2

0
dθ cos2(θ) sin(θ)

cos(θ) = t

dt = − sin(θ)dθ

= −2
�v
c

�� −1

0
dt t2 = −2

�v
c

� ����
t3

3

����
−1

0

=
2

3

�v
c

�

full cycle: (up -> down) and (down -> up) : SYMMETRY

<
∆E

E
>up→down=<

∆E

E
>down→up



Diffusive Shock Acceleration

<
∆E

E
> =

4

3

�v
c

�
=

4

3

�
u1 − u2

c

�

Energy gain per cycle (up -> down -> up):

First-order (in v/c) Fermi mechanism
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Diffusive Shock Acceleration
What happens after n cycles?

<
∆E

E
> =

4

3

�v
c

�

Ei+1 =

�
1 +

4

3

v

c

�
Ei

Ei+1 − Ei

Ei
=

particle energy 
at i-th cycle

UP DOWN

Particles can escape 
downstream!

Ei+1 = β Ei

Energy increases by a 
(small) factor beta after 

each cycle
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after k cycles:

there are                          particles with energy aboveN = N0P
k E = E0β
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Diffusive Shock Acceleration
What happens after n cycles?

P -> probability that the particle remains within the accelerator after each cycle

after k cycles:

there are                          particles with energy aboveN = N0P
k E = E0β

k

log

�
N

N0

�
= k logP log

�
E

E0

�
= k log β

log(N/N0)

log(E/E0)
=

logP

log β N(> E) = N0

�
E

E0

� log P
log β



Diffusive Shock Acceleration

N(> E) = N0

�
E

E0

� log P
log β

n(E) ∝ E−1 + log P
log β

Integral spectrum Differential spectrum

We need to determine the value of P -> probability that the particle remains within 
the accelerator after each cycle
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It is easier to calculate the probability (1-P) that the particle leaves 

the accelerator after each cycle

UP DOWN
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time (rate) that 
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Diffusive Shock Acceleration
It is easier to calculate the probability (1-P) that the particle leaves 

the accelerator after each cycle

UP DOWN

Rin RoutRin -> # of 
particles per unit 
time (rate) that 
begin a  cycle

Rout -> # of 
particles per unit 
time (rate) that 
leave the system

Rout

Rin
= 1− P
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Let’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =
n

4π
dΩ

θ

velocity across the shock: c cos(θ)
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Diffusive Shock Acceleration
Let’s calculate Rin...

n -> density of accelerated particles close to the shock

UP DOWN

n is isotropic: dn =
n

4π
dΩ

θ

velocity across the shock: c cos(θ)

Rin =

�

up→down
dn c cos(θ) =

n c

4π

� π
2

0
cos(θ) sin(θ)dθ

� 2π

0
dψ =

1

4
n c

...and Rout -> particles lost (advected) downstream Rout = n u2
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=
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<< 1

most of the particles 
perform many cycles



Diffusive Shock Acceleration
The probability of non returning to the shock (1-P) is:

1− P =
Rout

Rin
=

n u2
1
4 n c

=
u1

c
<< 1

most of the particles 
perform many cycles

Summarizing...

return probability -> P = 1− u1

c

energy gain per cycle-> β = 1 +
4

3

u1 − u2

c
= 1 +

u1

c
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n(E) ∝ E−1 + log P
log β

logP = log
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Diffusive Shock Acceleration

n(E) ∝ E−1 + log P
log β

logP = log
�
1− u1

c

�
∼ − u1

c

log β = log
�
1 +

u1

c

�
∼ u1

c

n(E) ∝ E−2

UNIVERSAL SPECTRUM



Diffusive Shock Acceleration
Assumptions made:

 strong shock

 isotropy both up and down-stream

 test-particle (CR pressure negligible) 

-> UNIVERSAL SPECTRUM n(E) ∝ E−2

 shock velocity/Mach number

 gas density/pressure

 magnetic field intensity and/or structure

 diffusion coefficient ...

It doesn’t depend on:



Diffusive Shock Acceleration
Assumptions made:

 strong shock

 isotropy both up and down-stream

 test-particle (CR pressure negligible) 

-> UNIVERSAL SPECTRUM n(E) ∝ E−2

 shock velocity/Mach number

 gas density/pressure

 magnetic field intensity and/or structure

 diffusion coefficient ...

It doesn’t depend on:

 SNR shocks

 turbulent B field

 efficient CR acceleration
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Diffusive Shock Acceleration

E

E2N(E)

universal spectrum

∝ E−2

Emax

maximum energy

UP DOWN

ld

while the particle diffuses the shock moves

ld = u1 td

ld ≈
�

D td



Diffusive Shock Acceleration
ld ≈

�
D td

ld = u1 td
{u1 td =

�
D td td ≈ D

u2
1

ld ≈ D

u1



Diffusive Shock Acceleration
ld ≈

�
D td

ld = u1 td
{u1 td =

�
D td td ≈ D

u2
1

ld ≈ D

u1

downstream: the same argument can be used to get the same result

remains a good order-of-magnitude estimate for the time of a cycletd
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Diffusive Shock Acceleration
ld ≈

�
D td

ld = u1 td
{u1 td =

�
D td td ≈ D

u2
1

ld ≈ D

u1

downstream: the same argument can be used to get the same result

remains a good order-of-magnitude estimate for the time of a cycletd

D increases with E

E increases at each cycle {the last cycle is the longest

acceleration time
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Diffusive Shock Acceleration
Maximum energy for the accelerated particles:

acceleration time td ≈ D

u2
1

D = D0 Eα

= tage

Emax =

�
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1 tage
D0

� 1
α

The maximum energy:  increases with time

 depends on: age, shock speed, magnetic field 

intensity and structure (through D), ...

 it is NOT universal!



Diffusive Shock Acceleration: weak shocks
Homework: what happens if the shock is NOT strong?

n(E) ∝ E−α α =
r + 2

r − 1
Solution:( )

Examples:  r = 4 --> alfa = 2

 r < 4 --> alfa >2

 r = 3 --> alfa = 3

Acceleration is less efficient at weak shocks



x

u �u0

low energy CRs high energy CRs

shock acceleration is
intrinsically efficient ➜ cosmic ray 

pressure is slowing down the upstream flow 
➜ formation of a precursor

CR
 pr
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Non-linear Diffusive Shock Acceleration
Non-linear DSA: what happens if the acceleration efficiency is high (~1)?



x

u �u0

low energy CRs high energy CRs

High energy CRs
R > 4

slope < 4

Low energy CRs
R < 4

slope > 4

Non-linear Diffusive Shock Acceleration
Non-linear DSA: what happens if the acceleration efficiency is high (~1)?



Diffusive Shock Acceleration at 
SuperNova Remnants and the origin of 

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest 
that CR sources have to inject in the Galaxy a 

spectrum close to E-2. 
(2) Strong shocks at SNRs can indeed accelerate 

E-2 spectra.
-> Thus SNRs are good candidates as sources of 

Galactic CRs.
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Diffusive Shock Acceleration at 
SuperNova Remnants and the origin of 

Galactic Cosmic Rays

(1) Spallation measurements of Cosmic Rays suggest 
that CR sources have to inject in the Galaxy a 

spectrum close to E-2. 
(2) Strong shocks at SNRs can indeed accelerate 

E-2 spectra.
-> Thus SNRs are good candidates as sources of 

Galactic CRs.✘
E-2 is the spectrum at the shock, not the one released in the ISM!


