Air Showers and Hadronic Interactions (3/3)

Karlsruhe Institute of Technology (KIT)

Collider distributions: reasonable agreement

Scaling: model predictions (i)

3

Scaling: model predictions (ii)

4

Importance of hadronic interactions

Mean depth of shower maximum

⁽RE, Pierog, Heck, ARNPS 2011)

Elongation rates and model features

Elongation rate theorem $D_{10}^{\text{had}} = \ln 10 X_0 (1 - B_n - B_\lambda)$ (Linsley, Watson PRL46, 1981) factor ~ 87 g/cm² $B_n = \frac{d\ln n_{\rm tot}}{d\ln E}$ Large if multiplicity of high energy particles rises very fast, zero in case of scaling $B_{\lambda} = -\frac{1}{X_0} \frac{d\lambda_{\text{int}}}{d\ln E}$ Large if cross section rises rapidly with energy

ਟ⁵ 800 **p-Air Multiplicity** 700 **QGSJET II** 600 **EPOS 1.6 QGSJET01** 500 SIBYLL 400 300 200 100 0 10² 10⁴ 10³ 10⁵ E_{cms} (GeV)

Muon production at large lateral distance

Muon observed at 1000 m from core

(Maris et al. ICRC 2009)

Electron and muon numbers of showers at ground

Dominating uncertainty of composition and energy measurements due to hadronic interaction models

Modification of ratio of neutral to charged pions

String fragmentation: baryon pairs

Baryon pairs: enhancement of low-energy muons

(Pierog, Werner PRL 101, 2008)

LHC data and model predictions

Proton-proton event at 7 TeV c.m. energy

Exotic models for the knee

New physics: scaling with nucleon-nucleon cms energy

LHC data probe the region beyond the knee

LHC data probe the region beyond the knee

 $\eta = -\ln \tan \frac{1}{2}$

LHC: Exotic scenarios for knee very unlikely, model predictions bracket LHC data on secondary particle multiplicity

(D'Enterria at al. Astropart Phys 35, 2011)

Charged particle distribution in pseudorapidity

Models for air showers typically better in agreement with LHC data

LHC: total energy deposited by secondary particles

CMS data: forward energy flow measured in calorimeter

Cosmic ray interaction models

7 TeV

0.9 TeV

Exotic scenarios for knee very unlikely, model predictions bracket LHC data on secondary particle distributions

LHCf: forward photon production

Cross section measurements at LHC

No big surprise given Tevatron measurements, but re-tuning of model cross sections needed

$$\frac{\Delta p}{p} = \xi > 5 \times 10^{-6}$$

$$\sigma_{ATLAS}=60.3\pm0.05\pm0.5\pm2.1\text{mb}$$

N _{trk} Pt (MeV)	3 200	4 200	3 250	4 250	$\sigma_{ m tot}$
<u>CMS</u>	<u>59.7</u>	<u>58.6</u>	<u>58.9</u>	<u>57.3</u>	
Q-11-03	65.2	64.6	63.0	62.0	77.5
SYBILL-2.1	71.5	71.0	70.2	69.3	79.6

(CMS, DIS Workshop, Brookhaven)

$$\sigma_{\text{ALICE}} = 72.7 \pm 1.1 \pm 5.1 \text{ mb}$$

Do simulated showers describe observations ?

Measured components of air showers

core distance (km)

The Pierre Auger Observatory

LIDARs and laser facilities

1665 surface detectors: water-Cherenkov tanks (grid of 1.5 km, 3000 km²)

Co. de las Cabra Southern hemisphere: Province Mendoza, Argentin

Telescope Array (TA)

Northern hemisphere: Utah, USA

Auger event simulation for surface array

TA event simulation for surface array

Several shower observables

Discrepancy: shower profile and muons at ground

Auger: comparison of surface detector signals

(Independent confirmation with several other observables)

TA: comparison of surface detector signals

SD energies 27% higher than FD energies (QGSJET II, protons)

Yakutsk: direct measurement of muons

Comparison of surface detectors

Auger: thick water-Cherenkov detectors (large part of signal due to muons, large acceptance to inclined showers)

Complementary surface detector arrays

Telescope Array: thin scintillators (main part of signal due to em. particles, low sensitivity to muons)

Accounting for different sensitivity to muons

(HadInt Working Group, UHECR 2012)

Accounting for different energy scales

(UHECR 2012, Hadronic interaction working group)

Results of all experiments compatible with significant deficit of muon number in simulation

Learning about hadronic physics from air showers

Cross section measurement with air showers

Universality features of high-energy showers (i)

Simulated shower profiles

Profiles shifted in depth

Depth of X_1 and X_{max} strongly correlated, use X_{max} for analysis

Selection of protons: select very deep showers

Cross section measurement: composition

Example of distribution of X_{max} for mixed composition

Only deep showers are used in analysis to enhance proton fraction in data sample

Cross section measurement: self-consistency

Simulation of data sample with different cross sections, interpolation to measured low-energy values

measured slope of λ_{max} distribution

$$\sigma_{p-\mathsf{air}} = \left(505 \ \pm 22_{\mathrm{stat}} \ \left(^{+26}_{-34}\right)_{\mathrm{sys}}
ight) \ \mathrm{mb}$$

High-energy frontier: proton-air cross section

Backup slides

Auger Observatory: Composition data

Mean depth of shower maximum

Telescope Array: Composition measurement

TA data compatible with light composition (independent analysis)

(Tameda, TA Collab., ICRC 2011)

Note: no direct comparison of data possible:

- Auger: fiducial volume cuts to avoid shower selection bias
- TA: selection bias included in MC simulations, not explicitly corrected for to increase statistics
- Data still compatible within sys. uncertainties

Modification of characteristics of interactions ?

Logarithmic interpolation starting at 10¹⁵ eV

$$f(E) = 1 + (f_{19} - 1) \frac{\ln(E/10^{15} \,\mathrm{eV})}{\ln(10^{19} \,\mathrm{eV}/10^{15} \,\mathrm{eV})}$$

Modification factor at 10¹⁹ eV

Modification of

- cross sections (p-air, π-air, K-air)
- secondary particle multiplicity
- elasticity (leading particle)

Implementation

- rescaling after event generation
- separate treatment of leading particle
- conservation of energy and charge
- modified version of CONEX
- available for different interaction models
- shown here for SIBYLL

Results for proton showers: Xmax

(R. Ulrich et al. PRD83 (2011) 054026)

Auger data 2009

Results for proton showers: Ne, Nµ

Change of interaction physics?

Model by Farrar & Allen, UHECR 2012 Restoration of chiral symmetry Strong enhancement of baryon production

Importance of correlations for fluctuations

Nuclear fragmentation is important for quantitative predictions

Early muons: importance of shower front curvature

Curvature of shower front sensitive to early muons

Curvature should be measured

Outlook: muon production depth

(Cazon et al. Astropart. Phys. 23, 2005 & 1201.5294)

Universality features of high-energy showers (ii)

