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Example: resonances in HADRIN
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Fig. lc. Inelastic reaction channei cross sections and total inelastic cross seclion
react ion p + p.  For  an explanat ion of  the symbols,  see Fig.  la  capt ion.
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Note that again resonances are contained in some of
the channels.  The step of sampi ing rhe resonance
decay is repeated, if there are resonances among the

decay products of the first resonances, until all decay
products are stable hadrons. In our model the
resonances decay isotropically in rheir resr frame.

4. Lorentz transformation of the momenra and
energies of all particles produced inro the targer
nucleon rest frame. The events generated in this way
conserve energy, momentum, charge, baryon number,
and strangeness exactly. This feature is obtained
because of the conservarion of these quanriries in each
reacl ion channel and in each decav steo and decav
e i ranne l ,  e .g . ,

7 r - + p - p - + p - T 0 * r - * p
l
1 0
+ 7 r " + 7 1

(Hänßgen, Ranft, Comp. Phys. Commun. 39, 1984)
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Summary: Modeling of resonance region
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No fundamental problem in resonance region

• Large amount of data exists (still not perfect)
• Careful implementation needed
• Several simulation codes available

Application to GZK processes

• Processes reasonably well understood
• Remarkable coincidence of energy thresholds
• Light nuclei disintegrate very fast
• Largest uncertainties coming from IR and UR background fields



Simulation concepts: energy ranges
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Particle production at intermediate energies
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Expectations from uncertainty relation
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~b

Assumptions:
• protons built up of partons
• partons liberated in collision process
• partons fragment into hadrons (pions, kaons,...) after interaction
• interaction viewed in c.m. system (other systems equally possible)

Dx Dp

x

' 1

Heisenberg uncertainty relation

R0 = R/G = R
✓

mp

Ep

◆

R ⇡ 1fm ⇡ 5GeV�1

hp?i ⇠ Dp? ⇠ 1
R
⇡ 200MeVhpki ⇠ Dpk ⇡

1
R0 ⇡

1
5

Ep

Longitudinal momenta of secondaries Transverse momenta of secondaries



QCD-inspired interpretation: color flow model

One-gluon exchange: 
two color fields (strings) 
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Partonic view:

GLïTXDUN

TXDUN

Color flow:

TT
T

T

TT

JOXRQ



Simplest case: e+e– annihilation into quarks

time
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color field

String fragmentation

e+

e-

Annihilation at high energy

Quarks together are 
color-neutral system
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Kinematic distribution of secondary particles
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Ansatz
• Lorentz-invariant for transformations along string
• Transverse momenta result of vacuum fluctuations

dN = f (p) d(p2 �m2) d4 p

Lorentz invariant function

= f (p)
d3 p
2E

p = (E,~p)

=
1
2

f (p) d2 p?
dpk
E

Separation of long. and transverse
degrees of freedom

=
1
2

f?(p?) d2 p? fk(y) dy

dpk
E

= dy

⇠ exp(�bp2

?) d

2 p? fk(y) dy

b�1 . . . effective temperature

New variable



Rapidity and pseudorapidity
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Rapidity

Rapidity of massless particles

y =
1
2

ln
1+ cos�
1� cos�

=� ln tan
�
2

Experiments without particle
identification: pseudorapidity � =� ln tan

⇥
2

dpk
E

= dy

q
Polar angle relative to beam axis

m? =
q

m2 + p2
?Transverse mass

y =
1
2

ln
E + pk
E � pk

= ln
E + pk

m?



String fragmentation and rapidity
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time

dN
dy

rapidity y

udduussdud

qq

qqqq

uud

udd

.........

uu

Lorenz transformation of rapidity

y0 = y+ const.

fk(y0) = fk(y) = r

Particle density
independent of rapidity

Total width energy-dependent

y
max

� y
min

⇠ log(s/m2)



Final state particles: two-string model

Rapidity  y 

dN/dy
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Partonic view:

GLïTXDUN

TXDUN

Color flow:

TT
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T
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Lab.
system

CM
system



Momentum fractions of string ends
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fq|nuc(x)⇥
(1� x)3

(x2 +µ2)
1
4

fq|nuc(x)⇥
(1� x)

3
2

⌅
x

fq|mes(x)⇥
1�

x(1� x)

Asymmetric momentum sharing of valence quarks: most energy given to di-quark

Quark in nucleon
(example: SIBYLL)

Many other parametrizations work well in describing data (example: DPMJET, FLUKA)

Sea quark momentum fractions

fqsea(x)�
1
x

fqsea(x)�
1⇥
xor



Color flow and final state particles (i)

One-gluon exchange: 
two color fields (strings) 
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Partonic view:

GLïTXDUN
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Color flow:
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Rapidity  y 
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Color flow and final state particles (ii)

Initial and final state radiation
does not change topology
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Partonic view:

GLïTXDUN
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Color flow:
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Other predicted color flow configurations

Partonic view:

di−quark

quark

Color flow:

q

qq

qq

q

Two-gluon exchange: 
diffraction dissociation
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Rapidity y

dN/dy

rapidity gap

At very high energy (multi-gluon exchange): 
Almost 50% of all events are elastic/diffractive scattering
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proton

Fluctuations: Generation of sea quark 
anti-quark pair and leading/excited hadron
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Hypothesis of Feynman scaling
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NA22 European Hybrid Spectrometer data
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Secondary particle multiplicities
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Secondary particle multiplicities
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Power-law increase of number 
of secondary particles

nch � s0.1

Leading particles



Parametrization of cross sections
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Interaction of hadrons with nuclei

b
projectile

s
inel

=
Z

d2~b

"

1�
A

’
k=1

⇣

1�sNN
tot

TN(~b�~sk)
⌘

#

⇡
Z

d2~b
h

1� exp

n

�sNN
tot

TA(~b)
oi

Glauber approximation:

s
prod

⇡
Z

d2~b
h

1� exp

n

�sNN
ine

TA(~b)
oi
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Coherent superposition of 
elementary nucleon-
nucleon interactions

sk



Example: proton-carbon cross section
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String configuration for nucleus as target
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Proton

Nucleus

Spectator nucleons: remnant nucleus

New quark pair with
momentum fraction
1/x or 1/sqrt(x)



SIBYLL: central & leading particle production
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there is an overproduction of !!’s compared to data,
especially in the forward region.

Pseudorapidity (") distributions of charged particles
from collider experiments are compared with SIBYLL in
Fig. 7. It shows the " distribution of charged particles from
p- !p collisions at Ec:m: ¼ 1800 GeV (CDF [44]), 630 GeV
(P238 [45]), 200 GeV (UA5 [46]) and 53 GeV (UA5 [47]).
The improvements made to version 2.1 most prominently
show in the central region. The role of the minijets and soft
interactions is visible in the central region, where version
1.7 lacks secondary particles especially as the energy in-
creases, while having more particles in the peripheral

region. This trait can be seen at low energies in the pp !
!þ;!! figures in Fig. 6. Version 2.1 gives an excellent
description of P238 data and tends to slightly overestimate
the particles at low energies. It should be noted that the "
range and trigger condition for 53 GeV is different than for
higher energies at UA5. The two versions are similar for
events with large j"j beyond the scope of current collider
detector measurements.
The distributions of charged particle multiplicity at UA5

[48] also give information at higher energies. Figure 8
shows the distribution of charged particle multiplicity for
p- !p collision at Ec:m: ¼ 900 GeV, at three different "
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FIG. 5 (color online). The Feynman x (xF) and rapidity (y) distribution of pions plotted against NA49 result of p-p [41] and p-C [42]
collision at Elab ¼ 158 GeV. Version 2.1 (1.7) results are shown in red solid (blue dotted) lines. The left (right) panels show the
production of !þ (!!). The upper panels show the xF distribution, where the p-C collision results are multiplied by factor 10 in order
to show both interactions on the same plot. The lower panels show the y distribution: the upper (lower) set of lines and data points are
from the p-C (p-p) collision.

AHN et al. PHYSICAL REVIEW D 80, 094003 (2009)

094003-8

NA49 p-p and
p-C at 158 GeV

SIBYLLSIBYLL

(Ahn et al., PRD80 (2009) 094003)

Proton-proton and 
proton-nucleus 
distributions very similar



Leading particle effect and nuclei
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Central collisions: 
• no leading particle effect,
• secondaries of highest energy 

are mesons



Basic features of multiparticle production
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• Leading particle effect
- ~50% of energy carried by leading nucleon
- incoming proton: 66% proton, 33% neutron

• Secondary particles
- power-law increase of multiplicity
- quark counting: ~33% π0, 66% π±

- transverse momentum energy-independent
- scaling of secondary particle distributions
- baryons are pair-produced, delayed threshold

• Total cross sections
- no good microscopic model (Regge theory)
- often parametrization of data used
- Glauber model for nuclei

• Diffraction (rapidity gaps)
- elastic scattering & low-mass diffraction dissociation
- large multiplicity fluctuations



Comparison of low/intermediate energy models
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DPMJET II & III
(Ranft / Roesler, RE, Ranft, Bopp)

FLUKA
(Ferrari, Sala, Ranft, Roesler)

GHEISHA 
(Fesefeld)

UrQMD
(Bleicher et al.)

SOPHIA
(Mücke, RE, et al.)

RELDIS 
(Pshenichnov)

• microscopic (universal) model
• resonances for low energy hadron 

projectiles (HADRIN, NUCRIN)
• two- and multi-string model 

• microscopic (universal) model
• resonances (PEANUT), photodissociation
• two-string model, DPMJET at high energy

• parametrization of data (GEANT 3)
• wide range of projectiles/targets
• limited to Elab < 500 GeV

• combination of microscopic model with 
data parametrization (no Glauber calc.)
• optimized for interactions of nuclei

• dedicated photon-nucleon model
• resonances, two-strings, Elab < 500 GeV

• dedicated photodissociation model for 
nuclei, wide range of nuclei



Example: Waxman-Bahcall neutrino limit (i)
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Maximum ``reasonable´´neutrino flux due to interaction of cosmic rays in sources

Assumptions:
• sources accelerate only protons (other particles yield fewer neutrinos)
• injection spectrum at sources known (power law index -2)
• each proton interacts once on its way to Earth (optically thin sources)

Proton flux at sources

Master equation

�p(Ep) =
dNp

dEpdAdtd⇥
= A E�⇤

p

�⇥(E⇥) =
Z dN⇥

dE⇥
(Ep) �p(Ep) dEp

Number of neutrinos produced in 
interval Eν...Eν+dEν, per proton interaction



Spectrum weighted moments (i)
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�⇥(E⇥) =
Z dN⇥

dE⇥
(Ep) �p(Ep) dEp

Aim: re-writing of equation
 for scaling of yield function

dN�
dE�

(Ep) =
1

Ep

dN�
dx

x =
E�
Ep

Scaling of 
neutrino yield

energy-independent
yield function

fraction of proton energy
given to neutrino
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Spectrum weighted moments (ii)

33

�⇥(E⇥) =
Z dN⇥

dE⇥
(Ep) �p(Ep) dEp

substitutions (1) - (3) �⇤(E⇤) =
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⇤ dx
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0
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⇤

Spectrum weighted moment 
(just a number that depends 
only on particle physics)

Proton flux 
(but with neutrino energy
instead of proton energy)



Example: Waxman-Bahcall neutrino limit (ii)
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Proton spectrum 
with α = 2 �⇥(E⇥) =

�Z 1

0
x

dN⇥
dx

dx
⇥

A E�2
⇥

Spectrum weighted moment for α=2:
mean energy fraction of proton given to neutrino
times number of neutrinos per interaction

Relevant interaction & decay chain (33% of all interactions with small Ecm)

p+ � �⇥ n ⇤+ �⇥ n µ+ ⇥µ �⇥ n e+ ⇥e ⇥̄µ ⇥µ

20% of p
energy each particle has 25% of the 

energy of the π+

�⇥µ(E⇥µ) = 0.33⇥0.2⇥0.25 AE�2
⇥µ



Atmospheric muons and neutrinos
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Atmosphere is dense target, secondary particles can interact or decay

Example: pion flux in atmosphere at depth X

dFp(E,X)

dX
=�

✓
1

Lp
+

ep
E X cosq

◆
Fp(E,X) +

ZNp
lN

FN(E)e�X/LN

LN = lN/(1�ZNN)

Regeneration of particle
flux through interaction

ep =
mph

0

tp cosq

Xv = X0E�h/h0

Loss of pions
due to decay

Generation of pions 
by primary nucleons

(Gaisser, Cosmic Rays and Particle Physics, 1990)

Muon and neutrino fluxes:
pion and kaon flux have to be 
folded with decay distributions

Spectrum weighted moment



Spectrum weighted moments for α = 2.7
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! !

Comparison with Accelerator
experiment

Z-factors

(Honda et al., C2CR 2005)

Detailed simulation of interactions for air target with DPMJET

Dashed/solid lines:
uncertainty due to 
possible scaling violation

p + air → π+ X 



Particle production at high and ultra-high energies
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Simulation concepts: energy ranges
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Transition from intermediate to high energy
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p

p

Intermediate energy:

• Elab < 1,500 GeV
• Ecm < 50 GeV
• dominated by valence 

quarks

High energy regime:

• Elab > 21,000 GeV
• Ecm > 200 GeV
• dominated by gluons 

and sea quarks

Dt ⇡ 1
DE

=
1p

p2 +m2 � p
=

1
p(
p

1+m2/p2 �1)
⇡ 2p

m2Lifetime of fluctuations



Transition from intermediate to high energy
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p

p

Intermediate energy:

• Elab < 1,500 GeV
• Ecm < 50 GeV
• dominated by valence 

quarks

High energy regime:

• Elab > 21,000 GeV
• Ecm > 200 GeV
• dominated by gluons 

and sea quarks

Dt ⇡ 1
DE

=
1p

p2 +m2 � p
=

1
p(
p

1+m2/p2 �1)
⇡ 2p

m2Lifetime of fluctuations

Gluon-gluon scattering



Scattering of quarks and gluons: jet production
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proton

antiproton

rapidity
polar
angle

Proton-antiproton 
collision at Tevatron



Interpretation within perturbative QCD
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Hard interaction
of two partons

Terminology
Soft interaction: no large momentum transfer
Hard interaction: large momentum transfer (|t| > 2 GeV2)

QCD predictions known
for parton-parton cross sections



QCD parton model: minijets
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jet pair

target nucleus (air)
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Proton-proton cross section



Perturbative QCD predictions for parton densities

projectile

jet pair

target nucleus (air)

f(x ,Q )

f(x ,Q )2
2

2
1
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Figure 6. The valence, sea and gluon distributions as obtained from the H1 and ZEUS
NLO QCD fits to NC, CC and jet data (latter in ZEUS fit only) at Q2 = 10 GeV2

as a function of x (left). The low x region is dominated by the gluon and sea quark
distributions divided on the plot by a factor of 20. The gluon distribution from the ZEUS
fit at Q2 =1, 5, 20 and 200 GeV2 (right).

Thus, the monotonic rise of F2 persists down to the lowest x measured at HERA, and
no evidence for a change of this behaviour such as a damping of the growth is found.
The observed independence of the local derivatives in ln x at fixed Q2 suggests that F2

can be parameterised in a very simple form F2 = c(Q2)x−λ(Q2) . The results for λ(Q2)
obtained by H1 and ZEUS are shown in Figure 7 (left). The coefficient c(Q2) ≈ 0.18 and
the parameterisation λ(Q2) = a·ln(Q2/Λ2) for Q2 ≥ 2 GeV2 are consistent with pQCD
analyses. At Q2 ≤ 1 GeV2 the behaviour is changing, and, in the photoproduction limit
(Q2 ≈ 0), λ is approaching 0.08, which is expected from the energy dependence of soft
hadronic interactions σtot ∼ sαP (0)−1 ≈ s0.08.

Another important quantity in view of possible non-linear gluon interaction effects is
the derivative (∂F2/∂ ln Q2)x which is a direct measure of scaling violations. Its behaviour
in x is a reflection of the gluon density dynamics in the associated kinematic range. The
derivative measurements are shown in Figure 7 (right) as a function of x for different Q2.
They show a continuous growth towards low x without an indication of a change in the
dynamics. The derivatives are well described by the pQCD calculations for Q2 ≥ 3 GeV2.

Non-zero values of the structure function FL appear in pQCD due to gluon radiation.
Therefore, FL is a most appropriate quantity to test QCD to NLO and especially to
examine pathological effects related to a possibly negative gluon distribution. According
to eq. 1, the FL contribution to the inclusive cross section is significant only at high y. The
conventional way to measure FL is to explore the y dependence of the cross section at given
x and Q2 by changing the center of mass energy of the interaction. Such measurements are
not yet performed at HERA. The H1 collaboration nevertheless could determine FL from
measurements at high y, i.e. small scattered electron energies down to 3 GeV. Various

Momentum fraction relative to proton

N
um

be
r 

of
 g

lu
on

s

HERA data

d fi(x,Q2)
d logQ2 =

�s(Q2)
2⇥

Z 1

x

dy
y ⇤

j
f j(y,Q2) Pj�i

�
x
y

⇥

Evolution of parton number
given by DGLAP equation
(and non-linear versions of it)

Prediction of
perturbative QCD



Solution: Multiple parton-parton interactions

45

projectile

target

 0

 50

 100

 150

 200

 10  100  1000  10000  100000

 10  12  14  16  18  20

σ
 

  (
m

b)

Ecm  (GeV)

log10 ( Elab / eV )

Minijets

Total cross 
section

Proton-proton cross section

�njet⇥ =
�QCD

�ine

Average number 
of minijet pairs

QCD prediction:
        inclusive cross section



Poissonian probability distribution
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Peripheral collision:
only very few parton-pairs interacting

Central collision: 
many parton-pairs interacting

Pn =
⇥nhard(⌅b)⇤n

n!
exp

�
�⇥nhard(⌅b)⇤

⇥

mean number of 
interactions for given 
impactparameter of 
collision

Need to know mean number of interactions
as function of impact parameter



Interaction of two parton pairs
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Generic diagram of interaction of two parton pairs

• gluon exchange between each pair produces two strings
• sea quarks needed for string ends (different combinations possible)
• other sea quark pairs possible but not explicitly simulated
• each string fragments into hadrons with small transverse momenta

Two soft interactions



Multiple soft and hard interactions
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�ns,nh =
�

d2b
[nsoft(b, s)]ns

ns!
[nhard(b, s)]nh

nh!
e�nhard(b,s)�nsoft(b,s)

Rapidity  y 

dN/dy

Rapidity  y 

dN/dy

ns=1, nh=0 ns=1, nh=1

height of plateau 
increased by jets



Comparison with collider data
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Note: one cut pomeron means 
         one soft or hard interaction
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Violation of Feynman scaling
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Feynman scaling 

With Feynman scaling:
distribution independent of energy

dN
dx
� f̃ (x) x = E/Eprim

2E
dN
d3 p
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Feynman scaling violated for small |xF|



Problem:  Very high parton densities (saturation)

nucleon

nucleus pR

2
0 '

a
s

(Q2
s

)
Q

2
s

· xg(x,Q2
s

)

Simple geometric criterion
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Saturation:
• parton wave functions overlap
• number of partons does not 

increase anymore at low x
• extrapolation to very high energy 

unclear

size of proton
Size of 
one gluon

number of 
gluons

RHIC data very important



Black disk scenario of high energy scattering ?
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Black Disk Model

• large number of minijets
• high perturbative saturation scale
• complete disintegration of leading particle

(Drescher et al. Phys. Rev. Lett. 94, 2005)

p

p

Not implemeted as dominating process in current models

High energy scattering



Comparison of high energy interaction models
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DPMJET II.5 and III
(Ranft / Roesler, RE, Ranft, Bopp)

EPOS
(Pierog, Werner)

QGSJET 01 
(Kalmykov, Ostapchenko)

QGSJET II.03
(Ostapchenko)

SIBYLL 2.1 
(Engel, RE, Fletcher, Gaisser, Lipari, Stanev)

• universal model
• saturation for hard partons via

geometry criterion
• HERA parton densities

• universal model
• saturation by RHIC data parametriztions
• custom-developed parton densities

• no saturation corrections
• old pre-HERA parton densities
• replaced by QGSJET II

• saturation correction for soft partons via
pomeron-resummation
• custom-developed parton densities

• saturation for hard partons via
geometry criterion
• HERA parton densities



High parton densities: modification of minijet threshold
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QGSJET II: high parton density effects

(Ostapchenko, PLB 2006, PRD 2006)
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Fig. 10. Complete set of enhanced diagrams containing “zig-zag fans” of kth order.

Fig. 11. Full set of non-loop diagrams.

Here we used the abbreviations χnet
a|d(i) = χnet

a|d(Y − yi, "b −
"bi |Y, "b), χnet

d|a(i) = χnet
d|a(yi, "bi |Y, "b), i = 1,2, and introduced

general “net fan” contribution as χnet
a|d = limk→∞ χ

net(k)
a|d . Us-

ing (13), we obtain for the latter the recursive equation

χnet
a|d(y1, "b1|Y, "b)

= χP
aπ

(
s0e

y1 , b1
)

+ G

C2
π

y1∫

0

dy2

∫
d2b2

{[
1 − e

−χnet
a|d (y2,"b2|Y,"b)]

× exp
(
−χnet

d|a(Y − y2, "b − "b2|Y, "b)
)

(17)− χnet
a|d(y2, "b2|Y, "b)

}
χP

ππ

(
s0e

y1−y2, |"b1 − "b2|
)
.

3. Numerical results

The obtained expressions allowed us to calculate hadronic
elastic scattering amplitudes and correspondingly total cross
sections and elastic scattering slopes with enhanced contribu-
tions taken into account. Here fad , σ tot

ad , Bel
ad are given by usual

expressions (3)–(6), with the pomeron quasi-eikonal χP
ad be-

ing replaced by χ tot
ad = χP

ad + χenh
ad . Technically, the “net fan”

contribution χnet
a|d has been obtained solving (17) iteratively and

substituted to (16) to calculate enhanced diagram contribution
χenh

ad . Concerning the parameter choice we used the usual values
C2

p = 1.5, Cπ = 1.6/Cp , γπ = 2/3γp [3], and from compar-
ison to data obtained αP(0) = 1.18, α′

P(0) = 0.195 GeV−2,
γp = 1.59 GeV−1, R2

p = 1.8 GeV−2, R2
π = 0.7 GeV−2, G3P =

9 × 10−3 GeV2. Thus, for the triple-pomeron coupling we have
r3P = 4πGCπγ 3

π = 0.18 GeV−1 compared to 0.12 GeV−1 and
0.083 GeV−1 in [9] and [10] correspondingly. The results for
σ tot

pp , σ tot
πp , Bel

pp are shown in Fig. 12 as calculated with the full
scheme or based on the bare pomeron eikonal χP

ad . In practice,
it is sufficient to take into consideration only the “tree” χ tree

ad

and the first “zig-zag” χ
enh(2)
ad corrections, i.e. to use for the

enhanced contribution χ̃enh
ad = χ tree

ad + χ
enh(2)
ad instead of χenh

ad

Fig. 12. Total cross section (left) and elastic scattering slope (right) as calculated
with and without enhanced contributions—solid and dashed lines correspond-
ingly. The compilation of data is from [12].

defined in (16); the difference for the calculated cross sections
is below percent level. This is because the contributions χ

enh(k)
ad

for k ! 3 are suppressed by exponential factors in the same way
as for “loop” diagrams in (10).

Let us finally verify that the developed scheme approaches
the asymptotic result (9) in the “dense” limit. Indeed, neglect-
ing the radius of multi-pomeron vertices, at s → ∞, b → 0 and
for αP(0) − 4πGγ 2

π > 1 we can obtain the solution of (17)
as χnet

a|d(y1, "b1|Y, "b) ' χP
aπ (s0e

y1 , b1) + &χ
asymp
aπ (s0e

y1 , b1),
&χ

asymp
aπ being defined in (9). Substituting this to (16), we see

that the enhanced contribution χenh
ad reduces to the asymptotic

form (9): χenh
ad (s, b) ' &χ

asymp
ad (s, b).

In conclusion, we re-summed dominant enhanced contribu-
tions to elastic hadron–hadron scattering amplitude to all or-
ders. Although the numerical calculations have been performed
using the simple pomeron exchange amplitude (1), (2), the ob-
tained formulas can be used for a different functional form of
f P

ad(s, b). In principle, one may apply similar techniques in the
perturbative QCD, using the BFKL pomeron amplitude [13],
provided eikonal approximation remains applicable for multi-
pomeron vertices.
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EPOS 1.6x – high parton density effects (i)

KLAUS WERNER, FU-MING LIU, AND TANGUY PIEROG PHYSICAL REVIEW C 74, 044902 (2006)

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 5. Basic parton-parton interaction in nucleus-nucleus colli-
sions: a projectile parton always interacts with exactly one parton on
the other side either elastically (closed parton ladder) or inelastically
(open parton ladder).

for kinky strings. For pB , we use 0.53 (soft), 0.30 (kinky), and
0.77 (remnant).

III. SPLITTING OF PARTON LADDERS

Let us first consider very asymmetric nucleus-nucleus
collisions, such as proton-nucleus or deuteron-nucleus. The
formalism developed earlier for pp can be generalized to these
nuclear collisions, as long as one assumes that a projectile
parton always interacts with exactly one parton on the other
side, elastically or inelastically (realized via closed or open
parton ladders), see Fig. 5. We employ the same techniques as
those developed in the previous section. The calculations are
complicated and require sophisticated numerical techniques,
but they can be done. The corresponding results for dAu will
be discussed later.

In the case of protons (or deuterons) colliding with heavy
nuclei (such as gold), there is a complication that has to be
taken into account. Suppose an inelastic interaction involves
an open parton ladder, between a projectile and some target
parton. The fact that these two partons interact implies that they
are close in impact parameter (transverse coordinate). Since
we have a heavy target, many target partons are available, and
there is a good chance of finding one among them being close
in impact parameter to the two interacting partons. In this case,
it may be quite probable that a parton from the ladder interacts
with this second target parton, inelastically or elastically, as
shown in Fig. 6.

As mentioned earlier, “ladder” is a symbolic notation,
covering soft contributions as well as “real” perturbative parton

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 6. Inelastic and elastic “rescattering” of a parton from the
parton ladder with a second target parton. We talk about (inelastic
and elastic) splitting of a parton ladder.

ladders. Even the latter ones are in general coupled to projectile
and target via soft pieces [18]. In the case of soft ones, we
still talk about partons, but they are nonperturbative partons.
We expect that ladder splitting occurs more likely in the soft
regions, and that the parallel legs after the splitting are more
likely soft.

Let us first discuss the effects of elastic splitting. The
squared amplitude for an elementary inelastic interaction
involving two partons with light cone momentum shares
x+ = 2p+/

√
s and x− = 2p−/

√
s can be parametrized quite

accurately as [18]

α (x+)β(x−)β, (2)

with two parameters α and β depending on the squared
energy s and the impact parameter b (

√
s is the proton-proton

c.m. system energy). Any addition of an elastic contribution
(closed ladder), be it in parallel or via splitting, provides an
interference term, which contributes negatively to (partial)
cross sections. So an additional elastic leg, even though it
does not affect particle production, provides screening. Model
calculations show that adding elastic splittings to the basic
diagrams modifies the corresponding squared amplitude as

α (x+)β(x−)β+ε, (3)

and therefore the whole effect can be summarized by a
simple positive exponent ε, which suppresses small light cone
momenta. So the existence of many target partons effectively
screens small x contributions, which agrees qualitatively with
the concept of saturation. But this is only part of the whole
story; several other aspects have to be considered.

An additional effect is the transport of transverse momen-
tum via an attached closed ladder, as shown in Fig. 7. Such
a transport we use already in the basic parton model, when
it comes to diffractive scattering, realized via a closed ladder.
Here, some transverse momentum transfer is needed to explain
the transverse momentum spectra of protons at large x (in the
diffractive region). In the case of diffractive target excitation,
the projectile gets simply a pt kick. We should have the same
phenomenon in the case of elastic splitting: the ladder parton
involved in the interaction should get a pt kick in the ame way
as the proton in diffractive scattering.

Let us turn to inelastic splitting, Fig. 8. Consider the
example shown in the figure. The upper part has only an
ordinary parton ladder, so we expect normal hadronization.
However, the lower part has two parallel ladders which are

projectile
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FIG. 7. Transport of transverse momentum via an attached closed
ladder.
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projectile
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partons

target
partons

FIG. 5. Basic parton-parton interaction in nucleus-nucleus colli-
sions: a projectile parton always interacts with exactly one parton on
the other side either elastically (closed parton ladder) or inelastically
(open parton ladder).

for kinky strings. For pB , we use 0.53 (soft), 0.30 (kinky), and
0.77 (remnant).

III. SPLITTING OF PARTON LADDERS

Let us first consider very asymmetric nucleus-nucleus
collisions, such as proton-nucleus or deuteron-nucleus. The
formalism developed earlier for pp can be generalized to these
nuclear collisions, as long as one assumes that a projectile
parton always interacts with exactly one parton on the other
side, elastically or inelastically (realized via closed or open
parton ladders), see Fig. 5. We employ the same techniques as
those developed in the previous section. The calculations are
complicated and require sophisticated numerical techniques,
but they can be done. The corresponding results for dAu will
be discussed later.

In the case of protons (or deuterons) colliding with heavy
nuclei (such as gold), there is a complication that has to be
taken into account. Suppose an inelastic interaction involves
an open parton ladder, between a projectile and some target
parton. The fact that these two partons interact implies that they
are close in impact parameter (transverse coordinate). Since
we have a heavy target, many target partons are available, and
there is a good chance of finding one among them being close
in impact parameter to the two interacting partons. In this case,
it may be quite probable that a parton from the ladder interacts
with this second target parton, inelastically or elastically, as
shown in Fig. 6.

As mentioned earlier, “ladder” is a symbolic notation,
covering soft contributions as well as “real” perturbative parton

projectile
partons

target
partons

projectile
partons

target
partons

FIG. 6. Inelastic and elastic “rescattering” of a parton from the
parton ladder with a second target parton. We talk about (inelastic
and elastic) splitting of a parton ladder.

ladders. Even the latter ones are in general coupled to projectile
and target via soft pieces [18]. In the case of soft ones, we
still talk about partons, but they are nonperturbative partons.
We expect that ladder splitting occurs more likely in the soft
regions, and that the parallel legs after the splitting are more
likely soft.

Let us first discuss the effects of elastic splitting. The
squared amplitude for an elementary inelastic interaction
involving two partons with light cone momentum shares
x+ = 2p+/

√
s and x− = 2p−/

√
s can be parametrized quite

accurately as [18]

α (x+)β(x−)β, (2)

with two parameters α and β depending on the squared
energy s and the impact parameter b (

√
s is the proton-proton

c.m. system energy). Any addition of an elastic contribution
(closed ladder), be it in parallel or via splitting, provides an
interference term, which contributes negatively to (partial)
cross sections. So an additional elastic leg, even though it
does not affect particle production, provides screening. Model
calculations show that adding elastic splittings to the basic
diagrams modifies the corresponding squared amplitude as

α (x+)β(x−)β+ε, (3)

and therefore the whole effect can be summarized by a
simple positive exponent ε, which suppresses small light cone
momenta. So the existence of many target partons effectively
screens small x contributions, which agrees qualitatively with
the concept of saturation. But this is only part of the whole
story; several other aspects have to be considered.

An additional effect is the transport of transverse momen-
tum via an attached closed ladder, as shown in Fig. 7. Such
a transport we use already in the basic parton model, when
it comes to diffractive scattering, realized via a closed ladder.
Here, some transverse momentum transfer is needed to explain
the transverse momentum spectra of protons at large x (in the
diffractive region). In the case of diffractive target excitation,
the projectile gets simply a pt kick. We should have the same
phenomenon in the case of elastic splitting: the ladder parton
involved in the interaction should get a pt kick in the ame way
as the proton in diffractive scattering.

Let us turn to inelastic splitting, Fig. 8. Consider the
example shown in the figure. The upper part has only an
ordinary parton ladder, so we expect normal hadronization.
However, the lower part has two parallel ladders which are
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FIG. 7. Transport of transverse momentum via an attached closed
ladder.
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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FIG. 12. Inelastic differential yields in pp collisions as a function
of pt for (from top to bottom) charged particles (over 2) at η = 0 and
η = 1; negative particles at η = 2.2 and η = 3.2 (always displaced
by factors of 10). Lines are EPOS simulations; points are data [7].
We also plot (dashed) the simulation curve at η = 0, multiplied by
0.1, 0.01, and 0.001, to serve as reference.

In Fig. 12, we plot inelastic differential yields as a function of
pt , at different pseudorapidities; η = 0, η = 1, η = 2.2, and
η = 3.2. We show EPOS simulations compared to BRAHMS
data [7]. We also plot (dashed line) the simulation curve at
η = 0, multiplied by 0.1, 0.01, and 0.001, to have a reference
for the results at the other pseudorapidities. The spectra clearly
get softer with increasing η.

VI. RESULTS FOR DEUTERON-GOLD

All screening effects are linear in Z, so it is worthwhile to
first investigate Z. In very asymmetric collisions such as dAu,
the projectile Z is essentially zero, whereas the target Z differs
considerably from zero. As shown in Fig. 13 (and obvious
from the definition), ZT increases linearly with the number of
collisions. So Z is essentially a centrality measure. In Fig. 14,
we show the Z distribution for the different centrality classes.
In this way, one understands easily how the different centrality
classes are affected by the splitting effects.

In the following, we define centrality via the impact param-
eter variable. A more correct definition (when comparing with
experiments) via multiplicities in given rapidity intervals has
been tested and gives the same results.

FIG. 13. Target Z as a function of centrality, expressed in terms
of the number of binary collisions, for dAu.

FIG. 14. Z distribution for different centrality classes.

Although we are mainly interested here in transverse
momentum spectra, we still show first of all the pseudorapidity
spectra, which finally determine the normalization of the
pt spectra. In Fig. 15, we show pseudorapidity spectra in
minimum bias dAu collisions: EPOS simulations, compared to
data from PHOBOS [29], STAR [4], and BRAHMS [30]. We
also show different contributions to the simulated distribution.
We distinguish inner and outer (projectile and target) contri-
butions, where the outer contributions are meant to contain the
multiple ladders, originating from ladder splittings, treated in
a collective way, as discussed above. The inner contribution
comes from ordinary ladders in the middle. The asymmetry of
the distribution is clearly due to the target remnant contribution
(the projectile contribution, not shown, is very small). In
Figs. 16 and 17, we show pseudorapidity spectra for central
and peripheral dAu collisions.

Let us now turn to pt spectra. One of the first observations
concerning pt spectra in dAu collisions was the fact that not
only does the nuclear modification factor show a nontrivial
behavior, but also this behavior seems to be strongly pseudo-
rapidity dependent, even when varying η by only one unit. We
will investigate this question in the following discussion.

In Fig. 18, we show transverse momentum spectra of
charged particles in dAu collisions at different central-
ities and at different pseudorapidities. The four figures
represent minimum bias, central (0%–20%), mid-central
(20%–40%), and peripheral (40%–100%) collisions. For
each figure, spectra for four pseudorapidity intervals are

FIG. 15. Pseudorapidity spectra of charged particles in minimum
bias dAu collisions. Lines are EPOS simulations; points are data
from PHOBOS [29] (circles), STAR [4] (triangles), BRAHMS [30]
(squares). We also show the inner and outer target contributions to
the simulated distribution.
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TABLE I. Best fit values for splitting parameters. Included in the
fit are data not shown in this paper.

Coefficient Corresponding variable Value

sM Minimum squared screening energy (25 GeV)2

wM Defines minimum for z′
0 6.000

wZ Global Z coefficient 0.080
wB Impact parameter width coefficient 1.160
aS Soft screening exponent 2.000
aH Hard screening exponent 1.000
aT Transverse momentum transport 0.025
aB Break parameter 0.070
aD Diquark break probability 0.110
aS Strange break probability 0.140
aP Average break transverse momentum 0.150

also compare the experimental energy dependence of cross
sections [22], hadron multiplicities [23], and (pseudo)rapidity
distributions [24,25] in pp or pp̄. The best fit parameters are
shown in Table I.

V. RESULTS FOR PROTON-PROTON

Ladder splitting is quite important for pp at very high ener-
gies, where cross sections and multiplicities are considerably
suppressed because of screening. At RHIC energies, however,
the effects are small: the total cross section is reduced by 5%,
the multiplicity by 10%. Concerning the transverse momentum
spectra to be discussed in detail in the following, the effect is
hardly visible.

When comparing charged particle pt spectra in pp from
the different RHIC experiments, one has to keep in mind
that STAR collaboration refers to non-single-diffractive (NSD)
events rather than inelastic ones. To demonstrate the difference
between the two, we show in Fig. 9 the UA5 [26] Collaboration
pseudorapidity distributions for NSD and inelastic events,
together with EPOS simulations. For the simulation of NSD
events, we use simply the same requirement as used in the
experiment (coincidence of charged particles in a forward and
backward pseudorapidity interval).

FIG. 9. Pseudorapidity distribution for inelastic and NSD events
in pp̄ collisions at 200 GeV. Lines are EPOS results; the points are
data [26]. Dotted line represents the inner contribution to the inelastic
distribution (many particles are coming from remnants).

FIG. 10. Ratio of NSDBBC differential yield to inelastic differen-
tial yield, in pp collisions, for pions (π ), kaons (K ), and protons ( p).

In the case of STAR, one could also define NSD as the
events accepted by the beam beam counter (BBC). What is
actually done is somewhat different. The differential cross
section according to BBC is multiplied by 30/26, in order to
correspond to what Pythia defines to be non-single-diffractive,
corresponding to 30 mb. Then, again based on Pythia, it is
argued that the inelastic differential yield for inelastic events
is obtained essentially (with a small correction at small pt ) by
multiplying by 30/42 (just the ratio of the cross sections), since
single-diffractive (SD) events do not contribute to particle
production. So, the originally measured differential yield and
the inelastic one differ essentially by a factor of 42/30 =
1.4. This is not quite what EPOS calculations provide when
simulating NSD events with the BBC trigger condition and
comparing with inelastic events. As seen in Fig. 10, the ratio
of the NSDBBC differential yield to the inelastic differential
yield, rather than being 1.4, differs considerably as a function
of pt and also depends on the particle species.

In Fig. 11, we show pt spectra (differential yields) for NSD
events, compared to STAR data [27], and for inelastic events,
compared to PHENIX data [6,28]. Simulation and data agree
within 15% (over 6 orders of magnitude).

When studying (later) dAu collisions, there will be
plenty of discussion concerning the pseudorapidity depen-
dence of certain effects. It is therefore necessary to first
check the pseudorapidity dependence of pt spectra for pp.

FIG. 11. Differential yields in pp collisions as a function of pt

for (from top to bottom) charged particles (over 2) for NSD events,
charged particles (over 2) for inelastic events, and neutral pions for
inelastic events. Lines are EPOS simulations; points are data from
STAR [27] and PHENIX [6,28]. The two agree within 15% (over six
orders of magnitude).
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FIG. 8. Hadron production in the case of inelastic ladder splitting.

also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)
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and j. The coefficients z0 and z′
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the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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also close in space, since they have a common upper end and
the lower ends are partons close in impact parameter, so the
hadronization of the two ladders is certainly not independent.
Therefore, we expect some kind of collective hadronization
of two interacting ladders. Here, we only considered the most
simple situation; one may also imagine three or more close
ladders, hadronizing collectively.

If we allow ladders to split, then perhaps they could merge
again and form loops. In fact, they can; only we do not need
to treat this explicitly, since the splitting concerns mainly the
soft ladders (or pieces), and these soft ladders are treated in
an effective, phenomenological way via parametrization. So
we can easily absorb loops into our effective soft ladders. This
cannot be done with the splitting, since the external legs may
be attached to different nuclei.

So far, we have discussed in a qualitative fashion the
consequences of elastic and inelastic parton ladder splitting.
The strength of the effects will certainly depend on the target
mass, via the number Z of partons available for additional
legs. The number Z of available partons will also increase with
energy, so at high enough energy the abovementioned effects
can already happen in pp collisions.

IV. REALIZATION OF LADDER SPLITTING EFFECTS

The basic quantity for a numerical treatment of the ladder
splitting effects is the number Z of partons available for
additional legs; more precisely, we have ZT for counting legs
on the target side and ZP for counting legs on the projectile
side. Let us treat ZT (corresponding discussion for ZP ).
Consider a parton in the projectile nucleon i which interacts
with a parton in target nucleon j. The number ZT (i, j ) of
additional legs has two contributions, one counting the legs
attached to the same nucleon j, and one counting the legs
attached to the other nucleons j ′ "= j . We assume the form

ZT (i, j ) = z0 exp
(
− b2

ij /2b0
2)

+
∑

target nucleons
j ′ "=j

z′
0 exp

(
− b2

ij ′/2b0
2), (4)

where bij is the distance in impact parameter between i
and j. The coefficients z0 and z′

0 depend logarithmically on

the energy, as

z0 = wZ log s/sM, (5)

z′
0 = wZ

√
(log s/sM )2 + wM

2, (6)

[log(x) := max(0, ln(x)] and the impact parameter width is
b0 = wB

√
σinelpp/π , with parameters wB,wZ, wM , and sM .

We then define

ZT (j ) =
∑

i

ZT (i, j ). (7)

We suppose that all the effects of the parton ladder splitting
can be treated effectively, meaning that the correct explicit
treatment of splittings is equivalent to the simplified treatment
without splittings, but with certain parameters modified,
expressed in terms of Z. We do this is not only to simplify our
life. Even an explicit dynamic treatment remains a phenomeno-
logical approach with many uncertainties about the splitting
vertices. So we prefer to have simple parametrizations rather
than a very complicated but uncertain dynamic treatment.

So which quantities depend on Z, and how? In the following,
the symbols ai are constants, used as fit parameters. The
elastic splitting leads to screening, which is expressed by the
screening exponents ε = εS (for soft ladders) and ε = εH (for
hard ladders), and here we assume

εS = aS βSZ, (8)

εH = aH βH Z, (9)

where βS and βH are the usual exponents describing soft
and hard amplitudes. Concerning the transport of transverse
momentum, we suppose

%pt = aT p0nqZ, (10)

where nq is the number of quarks of the objects in the
hadronization process (1 for quarks, 2 for diquarks), and
p0 = 0.5 GeV is just used to define a scale.

Let us now address collective hadronization. We will
actually “absorb” the multiple ladders into the remnants, which
are usually treated as strings. Now we treat them as strings with
modified string break parameters to account for collective
hadronization. We modify the break probability (per unit
space-time area) pB , which determines whether a string breaks
earlier or later, the diquark break probability pD , the strange
break probability pS , and the mean transverse momentum p̄t

of a break, as

pB → pB − aBZ, (11)

pD → pD (1 + aDZ), (12)

pS → pS (1 + aSZ), (13)

p̄t → p̄t (1 + aP Z), (14)

with positive parameters ai . So with increasing Z, a reduced
pB will lead to more particle production; an increased pD, pS ,
and p̄t will lead to more baryon-antibaryon production, more
strangeness production, and an increased pt for each string
break.

The parameters sM,wi , and ai are chosen to reproduce
the RHIC pp and dAu data shown in this paper, as well as
pt spectra for identified pions, kaons, and protons [21]. We
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Uncertainty in energy extrapolation !
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SIBYLL:
strings connected to valence quarks;
first fragmentation step with harder 
fragmentation function

QGSJET:
fixed probability of strings connected to 
valence quarks or sea quarks;
explicit construction of remnant hadron

EPOS:
strings always connected to sea quarks;
bags of sea and valence quarks fragmented 
statistically



EPOS: remant vs. string contributions
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FIG. 1. Elementary parton-parton scattering: the hard scattering
in the middle is preceded by parton emissions (initial state spacelike
cascade); these partons being usually off-shell, they emit more partons
(final state timelike cascade). For all this we use a symbolic parton
ladder.

One may simply consider the remnants to be diquarks,
providing a string end, but this simple picture seems to be
excluded from the strange antibaryon results produced at the
CERN super proton synchrotron (SPS) [19].

We therefore adopt the following picture, as indicated in
Fig. 2: not only a quark but also a two-fold object takes
part directly in the interaction, being a quark-antiquark or a
quark-diquark, leaving behind a colorless remnant, which is
in general excited (off-shell). So we have finally three white
objects: the two off-shell remnants and the parton ladder
between the two active partons on either side (by parton
we mean quark, antiquark, diquark, or antidiquark). We also
refer to “inner contributions” (from parton ladders) and “outer
contributions” (from remnants), which reflect the fact that
the remnants produce particles mainly at large rapidities and
the parton ladders at central rapidities, see Fig. 3. Whereas the
outer contributions are essentially energy independent, apart
from a shift in rapidity, the inner contributions grows with
energy, central rapidities. But at RHIC energies, a substantial
remnant contribution remains at midrapidity.

We showed in Ref. [20] that the three-object picture as
discussed in this paper can solve the multi-strange baryon
problem of Ref. [19].

In practice, a couple of parameters determine remnant
properties. We assume the remnants to be off-shell with
probability pO , a mass distribution given as

prob ∝ M−2αO , (1)

within the kinematic allowed range of M, with parameter
values which are not necessarily the same for nondiffractive
and diffractive interactions (the latter ones defined as those
without parton ladders). We use currently for pO 0.75 (dif )

N

N

remnant
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excitation

target
remnant
excitation

parton
ladder

FIG. 2. Complete picture, including remnants, which are an
important source of particle production at RHIC energies.
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FIG. 3. Inner contributions from the parton ladder (full lines) and
outer contributions from the remnants (dashed lines) to the rapidity
distribution of hadrons (artist’s view). LHC indicates energies reached
by the CERN Large Hadron Collider.

and 0.95 (nondif ), and for αO 0.75 (dif ) and 1.1 (nondif ).
Those excitation exponents may give rise to quite high mass
remnants; RHIC and SPS data seem to support this. High mass
remnants will be treated as strings.

Even inclusive measurements often require more informa-
tion than just inclusive cross sections, for example, via trigger
conditions. In any case, for detailed comparisons we need an
event generator, which obviously requires information about
exclusive cross sections (the widely used pQCD generators
are not event generators in this sense, they are generators of
inclusive spectra, and a Monte Carlo event is not a physical
event). This problem has been known for many years; the
solution is Gribov’s multiple scattering theory, which has been
employed by many authors. This formulation is equivalent to
using the eikonal formula to obtain exclusive cross sections
from knowledge of the inclusive one.

Recently we indicated inconsistencies in this approach,
proposing an “energy-conserving multiple scattering treat-
ment” [18]. The main idea is simple: in the case of multiple
scattering, when calculating partial cross sections for double,
triple, . . . scattering, one has to explicitly account for the fact
that the total energy has to be shared among the individual
elementary interactions.

A consistent quantum mechanical formulation of multiple
scattering requires consideration not only of the (open)
parton ladders, discussed so far, but also of closed ladders,
representing elastic scattering, see Fig. 4. Closed ladders do
not contribute to particle production, but they are crucial
since they affect substantially the calculations of partial cross

parton

ladder

parton

ladder

closedopen

FIG. 4. Two elements of the multiple scattering theory: open
ladders, representing inelastic interactions, and closed ladders,
representing elastic interactions.
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TABLE I. Best fit values for splitting parameters. Included in the
fit are data not shown in this paper.

Coefficient Corresponding variable Value

sM Minimum squared screening energy (25 GeV)2

wM Defines minimum for z′
0 6.000

wZ Global Z coefficient 0.080
wB Impact parameter width coefficient 1.160
aS Soft screening exponent 2.000
aH Hard screening exponent 1.000
aT Transverse momentum transport 0.025
aB Break parameter 0.070
aD Diquark break probability 0.110
aS Strange break probability 0.140
aP Average break transverse momentum 0.150

also compare the experimental energy dependence of cross
sections [22], hadron multiplicities [23], and (pseudo)rapidity
distributions [24,25] in pp or pp̄. The best fit parameters are
shown in Table I.

V. RESULTS FOR PROTON-PROTON

Ladder splitting is quite important for pp at very high ener-
gies, where cross sections and multiplicities are considerably
suppressed because of screening. At RHIC energies, however,
the effects are small: the total cross section is reduced by 5%,
the multiplicity by 10%. Concerning the transverse momentum
spectra to be discussed in detail in the following, the effect is
hardly visible.

When comparing charged particle pt spectra in pp from
the different RHIC experiments, one has to keep in mind
that STAR collaboration refers to non-single-diffractive (NSD)
events rather than inelastic ones. To demonstrate the difference
between the two, we show in Fig. 9 the UA5 [26] Collaboration
pseudorapidity distributions for NSD and inelastic events,
together with EPOS simulations. For the simulation of NSD
events, we use simply the same requirement as used in the
experiment (coincidence of charged particles in a forward and
backward pseudorapidity interval).

FIG. 9. Pseudorapidity distribution for inelastic and NSD events
in pp̄ collisions at 200 GeV. Lines are EPOS results; the points are
data [26]. Dotted line represents the inner contribution to the inelastic
distribution (many particles are coming from remnants).

FIG. 10. Ratio of NSDBBC differential yield to inelastic differen-
tial yield, in pp collisions, for pions (π ), kaons (K ), and protons ( p).

In the case of STAR, one could also define NSD as the
events accepted by the beam beam counter (BBC). What is
actually done is somewhat different. The differential cross
section according to BBC is multiplied by 30/26, in order to
correspond to what Pythia defines to be non-single-diffractive,
corresponding to 30 mb. Then, again based on Pythia, it is
argued that the inelastic differential yield for inelastic events
is obtained essentially (with a small correction at small pt ) by
multiplying by 30/42 (just the ratio of the cross sections), since
single-diffractive (SD) events do not contribute to particle
production. So, the originally measured differential yield and
the inelastic one differ essentially by a factor of 42/30 =
1.4. This is not quite what EPOS calculations provide when
simulating NSD events with the BBC trigger condition and
comparing with inelastic events. As seen in Fig. 10, the ratio
of the NSDBBC differential yield to the inelastic differential
yield, rather than being 1.4, differs considerably as a function
of pt and also depends on the particle species.

In Fig. 11, we show pt spectra (differential yields) for NSD
events, compared to STAR data [27], and for inelastic events,
compared to PHENIX data [6,28]. Simulation and data agree
within 15% (over 6 orders of magnitude).

When studying (later) dAu collisions, there will be
plenty of discussion concerning the pseudorapidity depen-
dence of certain effects. It is therefore necessary to first
check the pseudorapidity dependence of pt spectra for pp.

FIG. 11. Differential yields in pp collisions as a function of pt

for (from top to bottom) charged particles (over 2) for NSD events,
charged particles (over 2) for inelastic events, and neutral pions for
inelastic events. Lines are EPOS simulations; points are data from
STAR [27] and PHENIX [6,28]. The two agree within 15% (over six
orders of magnitude).
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EPOS: change from remanant-dominated to string-dominated particle production
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Different implementations of two-gluon scattering

Kinematics etc. given by parton densities and 
perturbative QCD

Two strings stretched between quark pairs 
from gluon fragmentation
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Interaction models for high and ultra-high energies
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Minijet production changes characteristics of interactions
• Predicted within perturbative QCD
• Natural source of scaling violations
• Parameters for calculation very uncertain
• Saturation effects very important, not really understood

Models construction
• Construction elements very similar
• Model philosophies complementary
• Tuned to data from fixed target and collider experiments
• Differences in treatment of key questions for high-energy extrapolation

Difference between models does probably not cover full range of uncertainty


