Air Showers and Hadronic Interactions (2/3)

Karlsruhe Institute of Technology (KIT)

Example: resonances in HADRIN

(Hänßgen, Ranft, Comp. Phys. Commun. 39, 1984)

Summary: Modeling of resonance region

No fundamental problem in resonance region

- Large amount of data exists (still not perfect)
- Careful implementation needed
- Several simulation codes available

Application to GZK processes

- Processes reasonably well understood
- Remarkable coincidence of energy thresholds
- Light nuclei disintegrate very fast
- Largest uncertainties coming from IR and UR background fields

Simulation concepts: energy ranges

Minijet region (scaling violation)

???

Particle production at intermediate energies

Expectations from uncertainty relation

Assumptions:

- protons built up of partons
- partons liberated in collision process
- partons fragment into hadrons (pions, kaons,...) after interaction
- interaction viewed in c.m. system (other systems equally possible)

Heisenberg uncertainty relation

$$\Delta x \, \Delta p_x \simeq 1$$

Longitudinal momenta of secondaries

$$\langle p_{\parallel}
angle \sim \Delta p_{\parallel} pprox rac{1}{R'} pprox rac{1}{5} E_p$$

Transverse momenta of secondaries

$$\langle p_{\perp} \rangle \sim \Delta p_{\perp} \sim \frac{1}{R} \approx 200 \,\mathrm{MeV}$$

QCD-inspired interpretation: color flow model

One-gluon exchange: two color fields (strings)

Simplest case: e⁺e⁻ annihilation into quarks

Confinement in QCD

$$V(r) = -\frac{4}{3}\frac{\alpha_{\rm s}}{r} + \lambda r$$

String fragmentation

Kinematic distribution of secondary particles

Ansatz

- Lorentz-invariant for transformations along string
- Transverse momenta result of vacuum fluctuations

$$dN = f(p) \ \delta(p^2 - m^2) \ d^4p$$

$$= f(p) \ \frac{d^3p}{2E}$$

$$= \frac{1}{2} f(p) \ d^2p_{\perp} \ \frac{dp_{\parallel}}{E}$$

$$= \frac{1}{2} f_{\perp}(p_{\perp}) \ d^2p_{\perp} \ f_{\parallel}(y) \ dy$$

$$\sim \exp(-\beta p_{\perp}^2) \ d^2p_{\perp} \ f_{\parallel}(y) \ dy$$
Lorentz invariant function
$$p = (E, \vec{p})$$
Separation of long. and transverse degrees of freedom
New variable
$$\frac{dp_{\parallel}}{E} = dy$$

$$\beta^{-1} \dots \text{ effective temperature}$$

Rapidity and pseudorapidity

 $\frac{\mathrm{d}p_{\parallel}}{E} = \mathrm{d}y$

Rapidity

$$y = \frac{1}{2} \ln \frac{E + p_{\parallel}}{E - p_{\parallel}} = \ln \frac{E + p_{\parallel}}{m_{\perp}}$$

Transverse mass $m_{\perp} = \sqrt{m^2 + p_{\perp}^2}$

Rapidity of massless particles

$$y = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = -\ln \tan \frac{\theta}{2}$$

Experiments without particle identification: **pseudorapidity**

$$\eta = -\ln\tan\frac{\theta}{2}$$

String fragmentation and rapidity

Final state particles: two-string model

Momentum fractions of string ends

Asymmetric momentum sharing of valence quarks: most energy given to di-quark

Quark in nucleon (example: SIBYLL)
$$f_{q|nuc}(x) \sim \frac{(1-x)^3}{(x^2+\mu^2)^{\frac{1}{4}}}$$

Many other parametrizations work well in describing data (example: DPMJET, FLUKA)

$$f_{q|nuc}(x) \sim \frac{(1-x)^{\frac{3}{2}}}{\sqrt{x}}$$
 $f_{q|mes}(x) \sim \frac{1}{\sqrt{x(1-x)}}$

Sea quark momentum fractions

$$f_{q_{sea}}(x) \sim \frac{1}{x}$$
 or $f_{q_{sea}}(x) \sim \frac{1}{\sqrt{x}}$

Color flow and final state particles (i)

Color flow and final state particles (ii)

15

Other predicted color flow configurations

Particle production spectra (i)

Fluctuations: Generation of sea quark anti-quark pair and leading/excited hadron

Leading particle effect

Particle production spectra (ii)

X_F

Hypothesis of Feynman scaling

NA22 European Hybrid Spectrometer data

Secondary particle multiplicities

Secondary particle multiplicities

Parametrization of cross sections

Interaction of hadrons with nuclei

Glauber approximation:

$$\sigma_{\text{inel}} = \int d^2 \vec{b} \left[1 - \prod_{k=1}^A \left(1 - \sigma_{\text{tot}}^{NN} T_N(\vec{b} - \vec{s}_k) \right) \right] \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\text{tot}}^{NN} T_A(\vec{b}) \right\} \right]$$

$$\sigma_{\rm prod} \approx \int d^2 \vec{b} \left[1 - \exp\left\{ -\sigma_{\rm ine}^{NN} T_A(\vec{b}) \right\} \right]$$

Coherent superposition of elementary nucleonnucleon interactions

Example: proton-carbon cross section

Number of participating target nucleons (I.8 at I00 GeV)

String configuration for nucleus as target

SIBYLL: central & leading particle production

p-C at 158 GeV

Proton-proton and proton-nucleus distributions very similar

Leading particle effect and nuclei

Central collisions:

- no leading particle effect,
- secondaries of highest energy are mesons

Basic features of multiparticle production

- Leading particle effect
 - ~50% of energy carried by leading nucleon
 - incoming proton: 66% proton, 33% neutron
- Secondary particles
 - power-law increase of multiplicity
 - quark counting: ~33% π^0 , 66% π^{\pm}
 - transverse momentum energy-independent
 - scaling of secondary particle distributions
 - baryons are pair-produced, delayed threshold
- Total cross sections
 - no good microscopic model (Regge theory)
 - often parametrization of data used
 - Glauber model for nuclei
- Diffraction (rapidity gaps)
 - elastic scattering & low-mass diffraction dissociation
 - large multiplicity fluctuations

Comparison of low/intermediate energy models

DPMJET II & III	 microscopic (universal) model resonances for low energy hadron
(Ranft / Roesler, RE, Ranft, Bopp)	projectiles (HADRIN, NUCRIN) two- and multi-string model
FLUKA (Ferrari, Sala, Ranft, Roesler)	 microscopic (universal) model resonances (PEANUT), photodissociation two-string model, DPMJET at high energy
GHEISHA (Fesefeld)	 parametrization of data (GEANT 3) wide range of projectiles/targets limited to E_{lab} < 500 GeV
UrQMD	 combination of microscopic model with
(Bleicher et al.)	data parametrization (no Glauber calc.) optimized for interactions of nuclei
SOPHIA (Mücke, RE, et al.)	 dedicated photon-nucleon model resonances, two-strings, E_{lab} < 500 GeV
RELDIS	 dedicated photodissociation model for
(Pshenichnov)	nuclei, wide range of nuclei

Example: Waxman-Bahcall neutrino limit (i)

Maximum ``reasonable''neutrino flux due to interaction of cosmic rays in sources

Assumptions:

- sources accelerate only protons (other particles yield fewer neutrinos)
- injection spectrum at sources known (power law index -2)
- each proton interacts once on its way to Earth (optically thin sources)

Proton flux at sources

$$\Phi_p(E_p) = \frac{dN_p}{dE_p dA dt d\Omega} = A E_p^{-\alpha}$$

Master equation

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

Number of neutrinos produced in interval $E_{\nu}...E_{\nu}+dE_{\nu}$, per proton interaction

Spectrum weighted moments (i)

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

Aim: re-writing of equation for scaling of yield function

Spectrum weighted moments (ii)

$$\Phi_{\mathbf{v}}(E_{\mathbf{v}}) = \int \frac{dN_{\mathbf{v}}}{dE_{\mathbf{v}}}(E_p) \, \Phi_p(E_p) \, dE_p$$

substitutions (1) - (3)
$$\Phi_{\nu}(E_{\nu}) = \int_0^1 x^{\alpha - 1} \frac{dN_{\nu}}{dx} A E_{\nu}^{-\alpha} dx$$

$$\Phi_{v}(E_{v}) = \left[\int_{0}^{1} x^{\alpha-1} \frac{dN_{v}}{dx} dx\right] A E_{v}^{-\alpha}$$
Proton flux
(but with neutrino energy)
(just a number that depends
only on particle physics)

Example: Waxman-Bahcall neutrino limit (ii)

Relevant interaction & decay chain (33% of all interactions with small E_{cm})

$$p + \gamma \longrightarrow n \pi^{+} \longrightarrow n \mu^{+} \nu_{\mu} \longrightarrow n e^{+} \nu_{e} \bar{\nu}_{\mu} \nu_{\mu}$$

$$20\% \text{ of } p$$

$$energy$$

$$each particle has 25\% \text{ of the}$$

$$energy \text{ of the } \pi^{+}$$

$$\Phi_{\nu_{\mu}}(E_{\nu_{\mu}}) = 0.33 \times 0.2 \times 0.25 AE_{\nu_{\mu}}^{-2}$$

Atmospheric muons and neutrinos

Atmosphere is dense target, secondary particles can interact or decay

Example: pion flux in atmosphere at depth X

$$\frac{d\Phi_{\pi}(E,X)}{dX} = -\left(\frac{1}{\Lambda_{\pi}} + \frac{\epsilon_{\pi}}{EX\cos\theta}\right)\Phi_{\pi}(E,X) + \frac{Z_{N\pi}}{\lambda_{N}}\Phi_{N}(E)e^{-X/\Lambda_{N}}$$
Spectrum weighted moment

Regeneration of particle flux through interaction

$$\Lambda_N = \lambda_N / (1 - Z_{NN})$$

Loss of pions due to decay

$$\varepsilon_{\pi} = \frac{m_{\pi}h_0}{\tau_{\pi}\,\cos\theta}$$

$$X_{\nu} = X_0 E^{-h/h_0}$$

Generation of pions by primary nucleons

Muon and neutrino fluxes: pion and kaon flux have to be folded with decay distributions

Spectrum weighted moments for $\alpha = 2.7$

Detailed simulation of interactions for air target with DPMJET

(Honda et al., C2CR 2005)

Particle production at high and ultra-high energies

Simulation concepts: energy ranges

Minijet region (scaling violation)

???

Transition from intermediate to high energy

Intermediate energy:

- *E*_{lab} < 1,500 GeV
- *E*_{cm} < 50 GeV
- dominated by valence quarks

Lifetime of fluctuations
$$\Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}$$

High energy regime:

- *E*_{lab} > 21,000 GeV
- *E*_{cm} > 200 GeV
- dominated by gluons and sea quarks

Transition from intermediate to high energy

Intermediate energy:

- *E*_{lab} < 1,500 GeV
- *E*_{cm} < 50 GeV
- dominated by valence quarks

Lifetime of fluctuations
$$\Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{p^2 + m^2} - p} = \frac{1}{p(\sqrt{1 + m^2/p^2} - 1)} \approx \frac{2p}{m^2}$$

High energy regime:

- *E*_{lab} > 21,000 GeV
- *E*_{cm} > 200 GeV
- dominated by gluons and sea quarks

Scattering of quarks and gluons: jet production

Interpretation within perturbative QCD

Soft interaction: no large momentum transfer Hard interaction: large momentum transfer ($|t| > 2 \text{ GeV}^2$)

QCD parton model: minijets

$$\sigma_{QCD} = \sum_{i,j,k,l} \frac{1}{1 + \delta_{kl}} \int dx_1 \, dx_2 \, \int_{p_{\perp}^{\text{cutoff}}} dp_{\perp}^2 \, f_i(x_1, Q^2) \, f_j(x_2, Q^2) \, \frac{d\sigma_{i,j \to k,l}}{dp_{\perp}}$$

Perturbative QCD predictions for parton densities

Solution: Multiple parton-parton interactions

Proton-proton cross section

Poissonian probability distribution

Peripheral collision: only very few parton-pairs interacting

Central collision: many parton-pairs interacting

$$P_n = \frac{\langle n_{\text{hard}}(\vec{b}) \rangle^n}{n!} \exp\left(-\langle n_{\text{hard}}(\vec{b}) \rangle\right)$$

Need to know mean number of interactions as function of impact parameter

mean number of interactions for given impactparameter of collision

Interaction of two parton pairs

Two soft interactions

Generic diagram of interaction of two parton pairs

- gluon exchange between each pair produces two strings
- sea quarks needed for string ends (different combinations possible)
- other sea quark pairs possible but not explicitly simulated
- each string fragments into hadrons with small transverse momenta

Multiple soft and hard interactions

Comparison with collider data

Violation of Feynman scaling

Feynman scaling

$$2E\frac{dN}{d^3p} = \frac{dN}{dy \, d^2p_{\perp}} \longrightarrow f(x_F, p_{\perp})$$

With Feynman scaling: distribution independent of energy

$$\frac{dN}{dx} \approx \tilde{f}(x) \qquad x = E/E_{\text{prim}}$$

Feynman scaling violated for small $|x_F|$

Problem: Very high parton densities (saturation)

Saturation:

- parton wave functions overlap
- number of partons does not increase anymore at low x
- extrapolation to very high energy unclear

Simple geometric criterion

Black disk scenario of high energy scattering ?

Comparison of high energy interaction models

DPMJET II.5 and III (Ranft / Roesler, RE, Ranft, Ворр)	 universal model saturation for hard partons via geometry criterion HERA parton densities
EPOS (Pierog, Werner)	 universal model saturation by RHIC data parametriztions custom-developed parton densities
QGSJET 01 (Kalmykov, Ostapchenko)	 no saturation corrections old pre-HERA parton densities replaced by QGSJET II
QGSJET II.03 (Ostapchenko)	 saturation correction for soft partons via pomeron-resummation custom-developed parton densities
SIBYLL 2.1 (Engel, RE, Fletcher, Gaisser, Lipari, Stanev)	 saturation for hard partons via geometry criterion HERA parton densities

High parton densities: modification of minijet threshold

SIBYLL: simple geometric criterion

$$\pi R_0^2 \simeq \frac{\alpha_s(Q_s^2)}{Q_s^2} \cdot xg(x, Q_s^2)$$

$$xg(x,Q^2) \sim \exp\left[\frac{48}{11 - \frac{2}{3}n_f} \ln \frac{\ln \frac{Q^2}{\Lambda^2}}{\ln \frac{Q^2}{\Lambda^2}} \ln \frac{1}{x}\right]^{\frac{1}{2}}$$

No dependence on impact parameter !

SIBYLL:
$$p_{\perp}(s) = p_{\perp}^{0} + 0.065 \text{GeV} \exp\left\{0.9\sqrt{\ln s}\right\}$$

DPMJET:
$$p_{\perp}(s) = p_{\perp}^0 + 0.12 \text{GeV} \left(\log_{10} \frac{\sqrt{s}}{50 \text{GeV}} \right)^3$$

54

QGSJET II: high parton density effects

Re-summation of enhanced pomeron graphs

(Ostapchenko, PLB 2006, PRD 2006)

EPOS I.6x – high parton density effects (i)

(Werner et al., PRC 2006)

EPOS I.6x – high parton density effects (ii)

 $b_0 = w_B \sqrt{\sigma_{\text{inel}pp}/\pi} \qquad z_0 = w_Z \log s/s_M,$ $z'_0 = w_Z \sqrt{(\log s/s_M)^2 + w_M^2},$

Uncertainty in energy extrapolation !

Different implementations

SIBYLL:

strings connected to valence quarks; first fragmentation step with harder fragmentation function

QGSJET:

fixed probability of strings connected to valence quarks or sea quarks; explicit construction of remnant hadron

EPOS: strings always connected to sea quarks; bags of sea and valence quarks fragmented statistically

EPOS: remant vs. string contributions

EPOS: change from remanant-dominated to string-dominated particle production

Different implementations of two-gluon scattering

Kinematics etc. given by parton densities and perturbative QCD

Two strings stretched between quark pairs from gluon fragmentation

Interaction models for high and ultra-high energies

Minijet production changes characteristics of interactions

- Predicted within perturbative QCD
- Natural source of scaling violations
- Parameters for calculation very uncertain
- Saturation effects very important, not really understood

Models construction

- Construction elements very similar
- Model philosophies complementary
- Tuned to data from fixed target and collider experiments
- Differences in treatment of key questions for high-energy extrapolation

Difference between models does probably not cover full range of uncertainty