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Evolution of SuperNova Remnants

the free-expansion phase ends when: M; ~ Mg,
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Mg, >> M@j -> the shock slows down

we want to find a relation between Rs and t

let's start by considering the shock heating of the gas

3
kp Ty =+ mui > 1 keV

much longer than

1
— 7. x T2 > 10° yr < theSNRage

cooling time

SNRs emit X-rays

the SNR in this phase conserves the total energy!
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Evolution of SuperNova Remnants

Mg, >> M@j -> the shock slows down
we want to find a relation between Rs and t

the only relevant physical quantities are: Egny and Ogas

Eon\ t?
R?

we can built a non dimensional quantity -> (
Ogas

1
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R, ~ ( SN> £3 | Sedov solution '
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Evolution of SuperNova Remnants

duration of the Sedov phase

taged Vg O(t_%g T2 OCU?% TCOCTQ%%

when tage ™~ Tc -> radiative losses become important

this happens at tage ~ O X 10* yr

R x5 20 pe
v x~ 200 km/s
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CR acceleration at SuperNova Remnants

1
/ Lcr 7” (5 Ogas U§> (4 T R?) erg/s

CR power \ \
CR acceleration shock surface
efficiency energy flux
3 P2 2 Log
LC R X Uy R s X t
free expansion phase
x 1

Sedov phase q

200 yr v

The CR luminosity peaks at the transition between
free expansion and Sedov phase




CR acceleration at SuperNova Remnants
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Can SNRs accelerate CRs

up to the knee?

diffusion length

D
g = =

(OF
acceleration time
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tacc - _2
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maximum CR energy determined by:
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Magnetic field amplification at shocks

A | WARNING! This would require a long discussion '

the ISM magnetic field (diffusion coefficient) is too weak (large) to accelerate CRs

at SNR shocks...

theoreticians believe that CRs can excite magnetic turbulence at shocks while being
accelerated -> MAGNETIC FIELD AMPLIFICATION

X-ray astronomers obtained quite convincing evidence for this fact, and measured
magnetic field strength up to ~100 uG + 1 m6G (1)

theoreticians think that, in the (very) turbulent amplified field the diffusion

coefficient is the Bohm diffusion coefficient:




Can SNRs accelerate CRs
up to the knee?

(1) Free expansion phase



Can SNRs accelerate CRs
up to the knee?

(1) Free expansion phase

D
tace = — < tage ‘t
- the two conditions
Rs — Us tage .
are equivalent



Can SNRs accelerate CRs
up to the knee?

(1) Free expansion phase

the two conditions

D
tace = @ < tage ﬁ
Rs — Us tage
D are equivalent
ld — — < Rs @ 9
Us
D(Emaw) -
age




Can SNRs accelerate CRs
up to the knee?

(1) Free expansion phase

the two conditions
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Can SNRs accelerate CRs
up to the knee?
(2) Sedov phase

most stringent
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Can SNRs accelerate CRs
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Emaa: A

e

—0

Emajm O( tage

d is basically unknown

particles with E>Emax
(accelerated at t<tqge)
escape the SNR

X tage 200 yr

l no particle escape '
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This is a supernova remnant

PeV particles are accelerated at
the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
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This is a supernova remnant

PeV particles are accelerated at
the beginning of Sedov phase
(~200yrs), when the shock speed is
high!

they quickly escape as the shock
slows down

Highest energy particles are
released first, and particles with
lower and lower energy are
progressively released later

a SNR is a PeVatron for a very
short time

still no evidence for the
existence of escaping CRs
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Injection spectrum of CRs from SNRs

Which CR spectrum is injected by a SNR during the whole Sedov phase?

unknown
particles are released in the ISM at a time: Eoct™°

CRs are accelerated at a rate: Lopr ¢t~

assumption: a constant fraction of Lcr escape the SNR

1 dt

décp_1symy x Logr dt xt tdt < E3 d_E dFE
dt 1 1
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Injection spectrum of CRs from SNRs

Which CR spectrum is injected by a SNR during the whole Sedov phase?

unknown
particles are released in the ISM at a time: Eoct™°

CRs are accelerated at a rate: Lopr ¢t~

assumption: a constant fraction of Lcr escape the SNR

1 dt
dgCR—ﬂSM X LCR dt O(t_ldt x Es d_E dF E_ldE
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Injection spectrum of CRs from SNRs

Which CR spectrum is injected by a SNR during the whole Sedov phase?

unknown
particles are released in the ISM at a time: Eoct™°

CRs are accelerated at a rate: Lopr ¢t~

assumption: a constant fraction of Lcr escape the SNR

1 dt
dgCR—ﬂSM X LCR dt O(t_ldt x Es d_E dF E_ldE

décr TS M

NCR(E) 0.¢ dEE X E_2
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A bit more general solution. ..
a frac’rion of the shock kin. ener'gy -> CRs with spectrum: [QCR X E_Sj

if only recent acceleration relevant -> I Qesc X Qcr 0(E — Epar(l)) '

Fesc — /Qesc(E) E dE QC’R(Ema:L‘) Egmx

(@)s <2 -> ncrLx %lQCR(EmaﬂU)E?nax, - [Nesc X E_Qj

escaping energy flux -

\(QASofT spectrum -> s > 2
2—s
nerLy ~ Qcr(Eo)E] m[QCR(Emax)E2 ' Fo 3 _ ;_
max Emax !*’\‘J

[ Nese o E7° ]

Ohira et al 2010



Alfven drift

Zirakashvili & Ptuskin 2008

A

Up-stream ! Down-stream
Shock

I CRs “feel” a smaller compression ratio -> softer spectrum!!l '



Summarizing:

SNRs are good candidate sources for CRs because:

they can provide the right amount of energy in form of CRs (if
~10% efficiency)

they inject CRs in the ISM with (roughly) the spectrum needed
to explain CR observations (~ E-2:1--:2:4)

they can accelerate CRs (at least) up to the energy of the CR
knee (~5 x 10'° eV)



Further
Gamma-Ray based Tests
for Cosmic Ray Origin



TeV emission from SNRs:
a test for CR origin

* RXJ1713 as seen by HESS

="
(]
-

mff\

~s§f"

0
0
0
0

|> | Test passed! '

This is still not a conclusive proof -> hadronic or leptonic emission?



Test (0): neutrinos

Good thing: Detection of neutrinos = hadronic interactions
Bad thing: Neutrino telescopes have a very poor sensitivity...

Thus: we'd better search for gamma-ray-based tests!
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Hadronic versus leptonic emission

X-ray synchrotron emission is observed from some TeV SNRs
(RXJ1713, Vela Junior...)

A

E® F(E)

relativistic // weaker B G the same electrons

electrons are that emit the
present at the \ < synchrotron also emit

shock inverse Compton gamma
s
stronger B g et
>
X-rays gamma-rays
synchrotron -> F, o ’neBB inverse Compton -> Fro X NeWso ft

this product is fixed by X-ray obs. we know this /



Hadronic versus leptonic emission:
from particle to photon spectra

l p-p interactions -> ’ N, x E~° — N, E~°

d+1
l inverse Compton -> ’ N, x E7° — Ny x B2



Hadronic versus leptonic emission
RXJ1713: hadronic and leptonic models

Hadronic: proton spectrum E- -> p-p interactions -> gamma ray spectrum E

Leptonic: low B field -> synchrotron losses negligible -> electron spectrum E2 ->
inverse Compton scattering -> gamma ray spectrum E12

E2 dN/dE [erg em™2 s7']

10-14

Tanaka et al., 2008
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Test (1) FERMI detects RX J1713
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Gamma rays from SNRs

(Giordano et al 2011) :
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Test (2): multi-TeV emission from SNRs

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron
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= 2000 yr

/

the actual behavior depends on gas
density, explosion energy, magnetic field
evolution, diffusion coefficient...
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Gabici & Aharonian, 2007
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Test (2): multi-TeV emission from SNRs

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron
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the actual behavior depends on gas /

density, explosion energy, magnetic field

evolution, diffusion coefficient... Gabici & Aharonian. 2007



Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

t = 400 yr
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implies the presence of
~PeV Cosmic Rays
-> PeVatron!



Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission
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spectrum like this one
due to inverse Compton?

NO->Klein-Nishina cutoff!
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Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

t = 400 yr

hard spectrum up to
~100 TeV, if hadronic
implies the presence of
~PeV Cosmic Rays
-> PeVatron!
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Are SuperNova Remnants CR PeVatrons?

Hadronic versus leptonic contribution to the gamma ray emission

t = 400 yr

hard spectrum up to
~100 TeV, if hadronic
implies the presence of
~PeV Cosmic Rays
-> PeVatron!

o
m
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2 [TeV/cm?/s]
o

can we expect to seea -

spectrum like this one M
due to inverse Compton?
NO->Klein-Nishina cutoff!

F(E)
o
N
L. [T

o

E [TeV]

| Hard spectrum up to >100 TeV -> PeVatron! '

unambiguous evidence of the
fact that SNRs accelerate
CRs up to the knee

the emission lasts for a very
short time
(400 yrs -> <10 SNRs)
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The role of Molecular Clouds

Maybe something like that
has been already detected...
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Both SNR and surrounding
molecular clouds emit gammas
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Gamma rays from MCs illuminated by CRs

t = 400 yr
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Gamma rays from MCs illuminated by CRs

t = 2000 yr d=1 kpc

100 TeV 1 PeV dsm"/cl = 100 pc

M, = 10*Mg
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Gamma rays from MCs illuminated by CRs
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Example: the galactic centre ridge
The galactic centre ridge as seen by HESS

HESS collaboration, 2006



Example: the galactic centre ridge

The galactic centre ridge as seen
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Example: the galactic centre ridge

200 |- -1.15° </ < -0.85°|" -0.85° < | < -0.55°|["

l PM Mﬂ

-0.55° </ < -0.25°

P
£ 200 - 10.25° < < 0.05°
1 ]

- .
8 b
=
>
Q L
o
2 !
@ - -
Q
x
L]
3
g ‘
g . ol
[+
(&]

1 - s 1 il Il 1 L] 1

0.05° <1< 0.35° ||

0.35°</ < 0.65°

\ T
65° </ < 0.95° 0.95° < /< 1.256°

JW:

1.25° <1< 1.55°

-50 (P A T M MR 1 e 7S I il P
-1 -05 0 05 1 -1 05 0 05 1 -1 05 0 05 1
Galactic latitude (degrees)

b
|23
e
=
(o]
o
w
4
2
@
3
8
[}
(6]

the correlation between
gamma ray intensity and gas
density is worse for the cloud
which is the farthest away
from the galactic centre

Galactic longitude (degrees)

HESS collaboration, 2006




Example: the galactic centre ridge

CR source

HESS collaboration, 2006



Example: the galactic centre ridge

after a time tqirr CRs fill a
volume like this
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Example: the galactic centre ridge

after a time tqirr CRs fill a
volume like this

CR source
‘o - [2 IZ> if we know the age of the source we can
diff =~ 5 estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge

SNR SgrA East -> t ~ 10% yr
(though quite uncertain)

after a time tqirr CRs fill a
volume like this

CR source
‘o - [2 IZ> if we know the age of the source we can
diff =~ 5 estimate the diffusion coefficient!

HESS collaboration, 2006



Example: the galactic centre ridge

12

CR source (~10* yr)



Example: the galactic centre ridge
12

D <7 x10%cm? /s

possibly smaller than the
average diffusion
CR source (~10* yr) coefficient in the Galaxy




Example: the galactic centre ridge
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Conclusions

We still don't know which are the sources of galactic CRs;
We have many reasons to believe that SNRs might be the sources of CRs;
A tight connection between CR physics and gamma-ray astronomy exists
(CR+ISM -> Gamma-rays);
Four gamma ray based tests for CR origin:
[ TeV emission from SNRs -> necessary but not sufficient condition
(] GeV-TeV spectrum of SNRs -> FERMI -> hadronic or leptonic?
() multi-TeV emission from SNRs -> future Cherenkov telescopes (Cherenkov
Telescope Array, TenTen ...) -> PeVatrons!

] Molecular clouds



Thanks!



