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Evolution of SuperNova Remnants

Msw >> Mej -> the shock slows down

we want to find a relation between Rs and t

 SNRs emit X-rays

 the SNR in this phase conserves the total energy! 

kbT2 =
3
16

mu2
1 � 1 keV

let’s start by considering the shock heating of the gas

τc ∝ T
1
2 � 106 yr

cooling time much longer than 
the SNR age!
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Evolution of SuperNova Remnants
duration of the Sedov phase

tage vs ∝ t−
3
5 T2 ∝ v2s τc ∝ T

1
2
2

tage ∼ τcwhen -> radiative losses become important

tage ∼ 5× 104 yrthis happens at

Rend
s ≈ 20 pc

vends ≈ 200 km/s{
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free expansion and Sedov phase



CR acceleration at SuperNova Remnants

no features in the 
spectrum until the knee

we’d like SNRs to 
accelerate CRs at least 

up to the knee
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Magnetic field amplification at shocks

 the ISM magnetic field (diffusion coefficient) is too weak (large) to accelerate  CRs 

at SNR shocks...

 theoreticians believe that CRs can excite magnetic turbulence at shocks while being 

accelerated -> MAGNETIC FIELD AMPLIFICATION

 X-ray astronomers obtained quite convincing evidence for this fact, and measured 

magnetic field strength up to ~100 µG ÷ 1 mG (!)

 theoreticians think that, in the (very) turbulent amplified field the diffusion 

coefficient is the Bohm diffusion coefficient:

WARNING! This would require a long discussion

D =
1

3
RL c ∝ E

B
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Can SNRs accelerate CRs 
up to the knee?

tage200 yr

Emax
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very uncertain?
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Emax ≈ 20

�
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�2 � tSedov

200 yr

�
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Particle escape from SNRs

tage200 yr

Emax

∝ tage

no particle escape

δ is basically unknown

Emax ∝ t−δ
age

particles with E>Emax 
(accelerated at t<tage) 

escape the SNR
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This is a supernova remnant

 PeV particles are accelerated at 
the beginning of Sedov phase 
(~200yrs), when the shock speed is 
high! 

 they quickly escape as the shock 
slows down

 Highest energy particles are 
released first, and particles with 
lower and lower energy are 
progressively released later

 a SNR is a PeVatron for a very 
short time

 still no evidence for the 
existence of escaping CRs

Particle escape from SNRs



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

E ∝ t−δ



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt

E ∝ t−δ



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt ∝ t−1dt

E ∝ t−δ



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt ∝ t−1dt

E ∝ t−δ

∝ E
1
δ

dt

dE
dE



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt ∝ t−1dt

E ∝ t−δ

∝ E
1
δ

dt

dE
dE

dt

dE
= −1

δ
E− 1

δ−1



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt ∝ t−1dt

E ∝ t−δ

∝ E
1
δ

dt

dE
dE

dt

dE
= −1

δ
E− 1

δ−1

∝ E−1dE



Injection spectrum of CRs from SNRs
Which CR spectrum is injected by a SNR during the whole Sedov phase?

particles are released in the ISM at a time:

LCR ∝ t−1CRs are accelerated at a rate:

unknown

assumption: a constant fraction of LCR escape the SNR

dECR→ISM ∝ LCR dt ∝ t−1dt
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E
∝ E−2 OK!
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A bit more general solution...

Ohira et al 2010

ηcra fraction of the shock kin. energy -> CRs with spectrum:Lk

if only recent acceleration relevant -> Qesc ∝ QCR δ(E − Emax(t))

QCR ∝ E−s

Fesc =
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Nesc ∝ E−s

(b) Soft spectrum -> s > 2
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(a) s < 2  -> Nesc ∝ E−2ηCRLk ≈ QCR(Emax)E
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Alfven drift
Zirakashvili & Ptuskin 2008

Shock
Up-stream Down-stream--

>

fluid velocity fluid velocity

↝ ↝↝ ↝ ↝↝waves waves

CRs “feel” a smaller compression ratio -> softer spectrum!!!



Summarizing:

 they can provide the right amount of energy in form of CRs (if 

~10% efficiency)

 they inject CRs in the ISM with (roughly) the spectrum needed 

to explain CR observations (~ E-2.1...2.4)

 they can accelerate CRs (at least) up to the energy of the CR 

knee (~5 x 1015 eV)

SNRs are good candidate sources for CRs because:



Further
Gamma-Ray based Tests 
for Cosmic Ray Origin



TeV emission from SNRs: 
a test for CR origin

RXJ1713 as seen by HESS

Test passed!

This is still not a conclusive proof -> hadronic or leptonic emission?



Test (0): neutrinos

Good thing: Detection of neutrinos = hadronic interactions

Bad thing: Neutrino telescopes have a very poor sensitivity... 

Thus: we’d better search for gamma-ray-based tests!
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Hadronic versus leptonic emission
X-ray synchrotron emission is observed from some TeV SNRs 

(RXJ1713, Vela Junior...)

X-rays gamma-rays

E2 F(E)

relativistic 
electrons are 
present at the 

shock

the same electrons 
that emit the 

synchrotron also emit 
inverse Compton gamma 

rays

synchrotron -> inverse Compton ->Fs ∝ neB
β FIC ∝ newsoft

we know thisthis product is fixed by X-ray obs.

weaker B

stronger B



Hadronic versus leptonic emission:
from particle to photon spectra

p-p interactions ->

inverse Compton ->

Np ∝ E−δ −→ Nγ ∝ E−δ

Ne ∝ E−δ −→ Nγ ∝ E− δ+1
2



Hadronic versus leptonic emission
RXJ1713: hadronic and leptonic models
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Hadronic: proton spectrum E-2 -> p-p interactions -> gamma ray spectrum E-2 

Leptonic: low B field -> synchrotron losses negligible -> electron spectrum E-2 -> 
inverse Compton scattering -> gamma ray spectrum E-1.5 
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Test (1) FERMI detects RX J1713

p-p interactions ->

inverse Compton ->

Abdo et al, 2011

this does NOT mean 
that there are no 

protons!!!

the emission is 
most likely 
LEPTONIC

Wp < 0.3× 1051
� n

0.1 cm−3)

�−1
erg



Gamma rays from SNRs
(Giordano et al 2011)

(A
bdo et al 2010)

Tycho
RXJ1713

steep (2.3) -> hadronic?

hard (1.5) -> leptonic?



time after the explosion.....

t = 8000 yrt = 2000 yrt = 400 yr

Test (2): multi-TeV emission from SNRs

Gabici & Aharonian, 2007

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron

the actual behavior depends on gas 
density, explosion energy, magnetic field 

evolution, diffusion coefficient...



time after the explosion.....

t = 8000 yrt = 2000 yrt = 400 yr

Test (2): multi-TeV emission from SNRs

Gabici & Aharonian, 2007

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron

the actual behavior depends on gas 
density, explosion energy, magnetic field 

evolution, diffusion coefficient...

RXJ1713
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t = 8000 yrt = 2000 yrt = 400 yr

Test (2): multi-TeV emission from SNRs

Gabici & Aharonian, 2007

The TeV emission depends on the SNR age
-> RXJ1713 is already too old to look like a PeVatron

the actual behavior depends on gas 
density, explosion energy, magnetic field 

evolution, diffusion coefficient...

RXJ1713
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Are SuperNova Remnants CR PeVatrons?

t = 400 yr
hard spectrum up to 

~100 TeV, if hadronic 
implies the presence of 

~PeV Cosmic Rays
-> PeVatron!

Hadronic versus leptonic contribution to the gamma ray emission

can we expect to see a 
spectrum like this one 

due to inverse Compton?
NO->Klein-Nishina cutoff!

Hard spectrum up to >100 TeV -> PeVatron!

unambiguous evidence of the 
fact that SNRs accelerate 

CRs up to the knee

the emission lasts for a very 
short time 

(400 yrs -> <10 SNRs)
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The role of Molecular Clouds

vs

γ

Both SNR and surrounding 
molecular clouds emit gammas

γ

W28

Maybe something like that 
has been already detected...



Gamma rays from MCs illuminated by CRs
d = 1 kpc

dsnr/cl = 100 pc

Mcl = 104M⊙

DPeV = 3 1029cm2/s

SNR Cloud

PeVatron!!!
but for short time!

1 PeV

t = 400 yr

Gabici&A
haronian(2007)
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100 TeV 1 PeV
t = 2000 yr

HESS remnant Indirect detection of a 
PeVatron! Emission lasts longer!

Gabici&A
haronian(2007)

NO ICS -> Klein-Nishina
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The galactic centre ridge as seen by HESS

HESS collaboration, 2006

good match between CS 
lines and TeV emission



Example: the galactic centre ridge

the correlation between 
gamma ray intensity and gas 

density is worse for the cloud 
which is the farthest away 
from the galactic centre

HESS collaboration, 2006
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Conclusions
 We still don’t know which are the sources of galactic CRs;

 We have many reasons to believe that SNRs might be the sources of CRs;

 A tight connection between CR physics and gamma-ray astronomy exists                                               

(CR+ISM -> Gamma-rays);

 Four gamma ray based tests for CR origin:

 TeV emission from SNRs -> necessary but not sufficient condition

 GeV-TeV spectrum of SNRs -> FERMI -> hadronic or leptonic?

 multi-TeV emission from SNRs -> future Cherenkov telescopes (Cherenkov 

Telescope Array, TenTen ...) -> PeVatrons!

 Molecular clouds



Thanks!


